ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt2 Unicode version

Theorem fvmpt2 5645
Description: Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmpt2  |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( F `  x
)  =  B )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    F( x)

Proof of Theorem fvmpt2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3087 . . 3  |-  ( y  =  x  ->  [_ y  /  x ]_ B  = 
[_ x  /  x ]_ B )
2 csbid 3092 . . 3  |-  [_ x  /  x ]_ B  =  B
31, 2eqtrdi 2245 . 2  |-  ( y  =  x  ->  [_ y  /  x ]_ B  =  B )
4 fvmpt2.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
5 nfcv 2339 . . . 4  |-  F/_ y B
6 nfcsb1v 3117 . . . 4  |-  F/_ x [_ y  /  x ]_ B
7 csbeq1a 3093 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
85, 6, 7cbvmpt 4128 . . 3  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
94, 8eqtri 2217 . 2  |-  F  =  ( y  e.  A  |-> 
[_ y  /  x ]_ B )
103, 9fvmptg 5637 1  |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( F `  x
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   [_csb 3084    |-> cmpt 4094   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266
This theorem is referenced by:  fvmptssdm  5646  fvmpt2d  5648  fvmptdf  5649  mpteqb  5652  fvmptt  5653  fvmptf  5654  fnmptfvd  5666  ralrnmpt  5704  rexrnmpt  5705  fmptco  5728  f1mpt  5818  offval2  6151  ofrfval2  6152  mptelixpg  6793  dom2lem  6831  mapxpen  6909  xpmapenlem  6910  mkvprop  7224  cc2lem  7333  cc3  7335  fsum3cvg  11543  summodclem2a  11546  fsumf1o  11555  fsum3cvg2  11559  fsumadd  11571  isummulc2  11591  fproddccvg  11737  fprodf1o  11753  txcnp  14507  cnmpt11  14519  cnmpt1t  14521  elplyd  14977  dvply1  15001  lgseisenlem2  15312
  Copyright terms: Public domain W3C validator