ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt2 Unicode version

Theorem fvmpt2 5641
Description: Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmpt2  |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( F `  x
)  =  B )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    F( x)

Proof of Theorem fvmpt2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3083 . . 3  |-  ( y  =  x  ->  [_ y  /  x ]_ B  = 
[_ x  /  x ]_ B )
2 csbid 3088 . . 3  |-  [_ x  /  x ]_ B  =  B
31, 2eqtrdi 2242 . 2  |-  ( y  =  x  ->  [_ y  /  x ]_ B  =  B )
4 fvmpt2.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
5 nfcv 2336 . . . 4  |-  F/_ y B
6 nfcsb1v 3113 . . . 4  |-  F/_ x [_ y  /  x ]_ B
7 csbeq1a 3089 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
85, 6, 7cbvmpt 4124 . . 3  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
94, 8eqtri 2214 . 2  |-  F  =  ( y  e.  A  |-> 
[_ y  /  x ]_ B )
103, 9fvmptg 5633 1  |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( F `  x
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   [_csb 3080    |-> cmpt 4090   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262
This theorem is referenced by:  fvmptssdm  5642  fvmpt2d  5644  fvmptdf  5645  mpteqb  5648  fvmptt  5649  fvmptf  5650  fnmptfvd  5662  ralrnmpt  5700  rexrnmpt  5701  fmptco  5724  f1mpt  5814  offval2  6146  ofrfval2  6147  mptelixpg  6788  dom2lem  6826  mapxpen  6904  xpmapenlem  6905  mkvprop  7217  cc2lem  7326  cc3  7328  fsum3cvg  11521  summodclem2a  11524  fsumf1o  11533  fsum3cvg2  11537  fsumadd  11549  isummulc2  11569  fproddccvg  11715  fprodf1o  11731  txcnp  14439  cnmpt11  14451  cnmpt1t  14453  elplyd  14887  lgseisenlem2  15187
  Copyright terms: Public domain W3C validator