ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt2 Unicode version

Theorem fvmpt2 5648
Description: Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmpt2  |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( F `  x
)  =  B )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    F( x)

Proof of Theorem fvmpt2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3087 . . 3  |-  ( y  =  x  ->  [_ y  /  x ]_ B  = 
[_ x  /  x ]_ B )
2 csbid 3092 . . 3  |-  [_ x  /  x ]_ B  =  B
31, 2eqtrdi 2245 . 2  |-  ( y  =  x  ->  [_ y  /  x ]_ B  =  B )
4 fvmpt2.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
5 nfcv 2339 . . . 4  |-  F/_ y B
6 nfcsb1v 3117 . . . 4  |-  F/_ x [_ y  /  x ]_ B
7 csbeq1a 3093 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
85, 6, 7cbvmpt 4129 . . 3  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
94, 8eqtri 2217 . 2  |-  F  =  ( y  e.  A  |-> 
[_ y  /  x ]_ B )
103, 9fvmptg 5640 1  |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( F `  x
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   [_csb 3084    |-> cmpt 4095   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267
This theorem is referenced by:  fvmptssdm  5649  fvmpt2d  5651  fvmptdf  5652  mpteqb  5655  fvmptt  5656  fvmptf  5657  fnmptfvd  5669  ralrnmpt  5707  rexrnmpt  5708  fmptco  5731  f1mpt  5821  offval2  6155  ofrfval2  6156  mptelixpg  6802  dom2lem  6840  mapxpen  6918  xpmapenlem  6919  mkvprop  7233  cc2lem  7349  cc3  7351  fsum3cvg  11560  summodclem2a  11563  fsumf1o  11572  fsum3cvg2  11576  fsumadd  11588  isummulc2  11608  fproddccvg  11754  fprodf1o  11770  prdsbas3  12989  txcnp  14591  cnmpt11  14603  cnmpt1t  14605  elplyd  15061  dvply1  15085  lgseisenlem2  15396
  Copyright terms: Public domain W3C validator