ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt2 Unicode version

Theorem fvmpt2 5717
Description: Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmpt2  |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( F `  x
)  =  B )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    F( x)

Proof of Theorem fvmpt2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3127 . . 3  |-  ( y  =  x  ->  [_ y  /  x ]_ B  = 
[_ x  /  x ]_ B )
2 csbid 3132 . . 3  |-  [_ x  /  x ]_ B  =  B
31, 2eqtrdi 2278 . 2  |-  ( y  =  x  ->  [_ y  /  x ]_ B  =  B )
4 fvmpt2.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
5 nfcv 2372 . . . 4  |-  F/_ y B
6 nfcsb1v 3157 . . . 4  |-  F/_ x [_ y  /  x ]_ B
7 csbeq1a 3133 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
85, 6, 7cbvmpt 4178 . . 3  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
94, 8eqtri 2250 . 2  |-  F  =  ( y  e.  A  |-> 
[_ y  /  x ]_ B )
103, 9fvmptg 5709 1  |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( F `  x
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   [_csb 3124    |-> cmpt 4144   ` cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325
This theorem is referenced by:  fvmptssdm  5718  fvmpt2d  5720  fvmptdf  5721  mpteqb  5724  fvmptt  5725  fvmptf  5726  fnmptfvd  5738  ralrnmpt  5776  rexrnmpt  5777  fmptco  5800  f1mpt  5894  offval2  6232  ofrfval2  6233  mptelixpg  6879  dom2lem  6921  mapxpen  7005  xpmapenlem  7006  mkvprop  7321  cc2lem  7448  cc3  7450  fsum3cvg  11884  summodclem2a  11887  fsumf1o  11896  fsum3cvg2  11900  fsumadd  11912  isummulc2  11932  fproddccvg  12078  fprodf1o  12094  prdsbas3  13315  txcnp  14939  cnmpt11  14951  cnmpt1t  14953  elplyd  15409  dvply1  15433  lgseisenlem2  15744
  Copyright terms: Public domain W3C validator