ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt2 Unicode version

Theorem fvmpt2 5676
Description: Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmpt2  |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( F `  x
)  =  B )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    F( x)

Proof of Theorem fvmpt2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3100 . . 3  |-  ( y  =  x  ->  [_ y  /  x ]_ B  = 
[_ x  /  x ]_ B )
2 csbid 3105 . . 3  |-  [_ x  /  x ]_ B  =  B
31, 2eqtrdi 2255 . 2  |-  ( y  =  x  ->  [_ y  /  x ]_ B  =  B )
4 fvmpt2.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
5 nfcv 2349 . . . 4  |-  F/_ y B
6 nfcsb1v 3130 . . . 4  |-  F/_ x [_ y  /  x ]_ B
7 csbeq1a 3106 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
85, 6, 7cbvmpt 4147 . . 3  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
94, 8eqtri 2227 . 2  |-  F  =  ( y  e.  A  |-> 
[_ y  /  x ]_ B )
103, 9fvmptg 5668 1  |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( F `  x
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   [_csb 3097    |-> cmpt 4113   ` cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288
This theorem is referenced by:  fvmptssdm  5677  fvmpt2d  5679  fvmptdf  5680  mpteqb  5683  fvmptt  5684  fvmptf  5685  fnmptfvd  5697  ralrnmpt  5735  rexrnmpt  5736  fmptco  5759  f1mpt  5853  offval2  6187  ofrfval2  6188  mptelixpg  6834  dom2lem  6876  mapxpen  6960  xpmapenlem  6961  mkvprop  7275  cc2lem  7398  cc3  7400  fsum3cvg  11764  summodclem2a  11767  fsumf1o  11776  fsum3cvg2  11780  fsumadd  11792  isummulc2  11812  fproddccvg  11958  fprodf1o  11974  prdsbas3  13194  txcnp  14818  cnmpt11  14830  cnmpt1t  14832  elplyd  15288  dvply1  15312  lgseisenlem2  15623
  Copyright terms: Public domain W3C validator