ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplitf Unicode version

Theorem fsumsplitf 11590
Description: Split a sum into two parts. A version of fsumsplit 11589 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumsplitf.ph  |-  F/ k
ph
fsumsplitf.ab  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
fsumsplitf.u  |-  ( ph  ->  U  =  ( A  u.  B ) )
fsumsplitf.fi  |-  ( ph  ->  U  e.  Fin )
fsumsplitf.c  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
Assertion
Ref Expression
fsumsplitf  |-  ( ph  -> 
sum_ k  e.  U  C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Distinct variable groups:    A, k    B, k    U, k
Allowed substitution hints:    ph( k)    C( k)

Proof of Theorem fsumsplitf
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3093 . . . 4  |-  ( k  =  j  ->  C  =  [_ j  /  k ]_ C )
2 nfcv 2339 . . . 4  |-  F/_ j U
3 nfcv 2339 . . . 4  |-  F/_ k U
4 nfcv 2339 . . . 4  |-  F/_ j C
5 nfcsb1v 3117 . . . 4  |-  F/_ k [_ j  /  k ]_ C
61, 2, 3, 4, 5cbvsum 11542 . . 3  |-  sum_ k  e.  U  C  =  sum_ j  e.  U  [_ j  /  k ]_ C
76a1i 9 . 2  |-  ( ph  -> 
sum_ k  e.  U  C  =  sum_ j  e.  U  [_ j  / 
k ]_ C )
8 fsumsplitf.ab . . 3  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
9 fsumsplitf.u . . 3  |-  ( ph  ->  U  =  ( A  u.  B ) )
10 fsumsplitf.fi . . 3  |-  ( ph  ->  U  e.  Fin )
11 fsumsplitf.ph . . . . . 6  |-  F/ k
ph
12 nfv 1542 . . . . . 6  |-  F/ k  j  e.  U
1311, 12nfan 1579 . . . . 5  |-  F/ k ( ph  /\  j  e.  U )
145nfel1 2350 . . . . 5  |-  F/ k
[_ j  /  k ]_ C  e.  CC
1513, 14nfim 1586 . . . 4  |-  F/ k ( ( ph  /\  j  e.  U )  ->  [_ j  /  k ]_ C  e.  CC )
16 eleq1w 2257 . . . . . 6  |-  ( k  =  j  ->  (
k  e.  U  <->  j  e.  U ) )
1716anbi2d 464 . . . . 5  |-  ( k  =  j  ->  (
( ph  /\  k  e.  U )  <->  ( ph  /\  j  e.  U ) ) )
181eleq1d 2265 . . . . 5  |-  ( k  =  j  ->  ( C  e.  CC  <->  [_ j  / 
k ]_ C  e.  CC ) )
1917, 18imbi12d 234 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  U )  ->  C  e.  CC )  <-> 
( ( ph  /\  j  e.  U )  ->  [_ j  /  k ]_ C  e.  CC ) ) )
20 fsumsplitf.c . . . 4  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
2115, 19, 20chvar 1771 . . 3  |-  ( (
ph  /\  j  e.  U )  ->  [_ j  /  k ]_ C  e.  CC )
228, 9, 10, 21fsumsplit 11589 . 2  |-  ( ph  -> 
sum_ j  e.  U  [_ j  /  k ]_ C  =  ( sum_ j  e.  A  [_ j  /  k ]_ C  +  sum_ j  e.  B  [_ j  /  k ]_ C ) )
23 csbeq1a 3093 . . . . . . 7  |-  ( j  =  k  ->  [_ j  /  k ]_ C  =  [_ k  /  j ]_ [_ j  /  k ]_ C )
24 csbco 3094 . . . . . . . . 9  |-  [_ k  /  j ]_ [_ j  /  k ]_ C  =  [_ k  /  k ]_ C
25 csbid 3092 . . . . . . . . 9  |-  [_ k  /  k ]_ C  =  C
2624, 25eqtri 2217 . . . . . . . 8  |-  [_ k  /  j ]_ [_ j  /  k ]_ C  =  C
2726a1i 9 . . . . . . 7  |-  ( j  =  k  ->  [_ k  /  j ]_ [_ j  /  k ]_ C  =  C )
2823, 27eqtrd 2229 . . . . . 6  |-  ( j  =  k  ->  [_ j  /  k ]_ C  =  C )
29 nfcv 2339 . . . . . 6  |-  F/_ k A
30 nfcv 2339 . . . . . 6  |-  F/_ j A
3128, 29, 30, 5, 4cbvsum 11542 . . . . 5  |-  sum_ j  e.  A  [_ j  / 
k ]_ C  =  sum_ k  e.  A  C
32 eqid 2196 . . . . 5  |-  sum_ k  e.  A  C  =  sum_ k  e.  A  C
3331, 32eqtri 2217 . . . 4  |-  sum_ j  e.  A  [_ j  / 
k ]_ C  =  sum_ k  e.  A  C
345, 4, 28cbvsumi 11544 . . . 4  |-  sum_ j  e.  B  [_ j  / 
k ]_ C  =  sum_ k  e.  B  C
3533, 34oveq12i 5937 . . 3  |-  ( sum_ j  e.  A  [_ j  /  k ]_ C  +  sum_ j  e.  B  [_ j  /  k ]_ C )  =  (
sum_ k  e.  A  C  +  sum_ k  e.  B  C )
3635a1i 9 . 2  |-  ( ph  ->  ( sum_ j  e.  A  [_ j  /  k ]_ C  +  sum_ j  e.  B  [_ j  / 
k ]_ C )  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
377, 22, 363eqtrd 2233 1  |-  ( ph  -> 
sum_ k  e.  U  C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   F/wnf 1474    e. wcel 2167   [_csb 3084    u. cun 3155    i^i cin 3156   (/)c0 3451  (class class class)co 5925   Fincfn 6808   CCcc 7894    + caddc 7899   sum_csu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  fsumsplitsn  11592
  Copyright terms: Public domain W3C validator