ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplitf Unicode version

Theorem fsumsplitf 11316
Description: Split a sum into two parts. A version of fsumsplit 11315 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumsplitf.ph  |-  F/ k
ph
fsumsplitf.ab  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
fsumsplitf.u  |-  ( ph  ->  U  =  ( A  u.  B ) )
fsumsplitf.fi  |-  ( ph  ->  U  e.  Fin )
fsumsplitf.c  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
Assertion
Ref Expression
fsumsplitf  |-  ( ph  -> 
sum_ k  e.  U  C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Distinct variable groups:    A, k    B, k    U, k
Allowed substitution hints:    ph( k)    C( k)

Proof of Theorem fsumsplitf
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3040 . . . 4  |-  ( k  =  j  ->  C  =  [_ j  /  k ]_ C )
2 nfcv 2299 . . . 4  |-  F/_ j U
3 nfcv 2299 . . . 4  |-  F/_ k U
4 nfcv 2299 . . . 4  |-  F/_ j C
5 nfcsb1v 3064 . . . 4  |-  F/_ k [_ j  /  k ]_ C
61, 2, 3, 4, 5cbvsum 11268 . . 3  |-  sum_ k  e.  U  C  =  sum_ j  e.  U  [_ j  /  k ]_ C
76a1i 9 . 2  |-  ( ph  -> 
sum_ k  e.  U  C  =  sum_ j  e.  U  [_ j  / 
k ]_ C )
8 fsumsplitf.ab . . 3  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
9 fsumsplitf.u . . 3  |-  ( ph  ->  U  =  ( A  u.  B ) )
10 fsumsplitf.fi . . 3  |-  ( ph  ->  U  e.  Fin )
11 fsumsplitf.ph . . . . . 6  |-  F/ k
ph
12 nfv 1508 . . . . . 6  |-  F/ k  j  e.  U
1311, 12nfan 1545 . . . . 5  |-  F/ k ( ph  /\  j  e.  U )
145nfel1 2310 . . . . 5  |-  F/ k
[_ j  /  k ]_ C  e.  CC
1513, 14nfim 1552 . . . 4  |-  F/ k ( ( ph  /\  j  e.  U )  ->  [_ j  /  k ]_ C  e.  CC )
16 eleq1w 2218 . . . . . 6  |-  ( k  =  j  ->  (
k  e.  U  <->  j  e.  U ) )
1716anbi2d 460 . . . . 5  |-  ( k  =  j  ->  (
( ph  /\  k  e.  U )  <->  ( ph  /\  j  e.  U ) ) )
181eleq1d 2226 . . . . 5  |-  ( k  =  j  ->  ( C  e.  CC  <->  [_ j  / 
k ]_ C  e.  CC ) )
1917, 18imbi12d 233 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  U )  ->  C  e.  CC )  <-> 
( ( ph  /\  j  e.  U )  ->  [_ j  /  k ]_ C  e.  CC ) ) )
20 fsumsplitf.c . . . 4  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
2115, 19, 20chvar 1737 . . 3  |-  ( (
ph  /\  j  e.  U )  ->  [_ j  /  k ]_ C  e.  CC )
228, 9, 10, 21fsumsplit 11315 . 2  |-  ( ph  -> 
sum_ j  e.  U  [_ j  /  k ]_ C  =  ( sum_ j  e.  A  [_ j  /  k ]_ C  +  sum_ j  e.  B  [_ j  /  k ]_ C ) )
23 csbeq1a 3040 . . . . . . 7  |-  ( j  =  k  ->  [_ j  /  k ]_ C  =  [_ k  /  j ]_ [_ j  /  k ]_ C )
24 csbco 3041 . . . . . . . . 9  |-  [_ k  /  j ]_ [_ j  /  k ]_ C  =  [_ k  /  k ]_ C
25 csbid 3039 . . . . . . . . 9  |-  [_ k  /  k ]_ C  =  C
2624, 25eqtri 2178 . . . . . . . 8  |-  [_ k  /  j ]_ [_ j  /  k ]_ C  =  C
2726a1i 9 . . . . . . 7  |-  ( j  =  k  ->  [_ k  /  j ]_ [_ j  /  k ]_ C  =  C )
2823, 27eqtrd 2190 . . . . . 6  |-  ( j  =  k  ->  [_ j  /  k ]_ C  =  C )
29 nfcv 2299 . . . . . 6  |-  F/_ k A
30 nfcv 2299 . . . . . 6  |-  F/_ j A
3128, 29, 30, 5, 4cbvsum 11268 . . . . 5  |-  sum_ j  e.  A  [_ j  / 
k ]_ C  =  sum_ k  e.  A  C
32 eqid 2157 . . . . 5  |-  sum_ k  e.  A  C  =  sum_ k  e.  A  C
3331, 32eqtri 2178 . . . 4  |-  sum_ j  e.  A  [_ j  / 
k ]_ C  =  sum_ k  e.  A  C
345, 4, 28cbvsumi 11270 . . . 4  |-  sum_ j  e.  B  [_ j  / 
k ]_ C  =  sum_ k  e.  B  C
3533, 34oveq12i 5838 . . 3  |-  ( sum_ j  e.  A  [_ j  /  k ]_ C  +  sum_ j  e.  B  [_ j  /  k ]_ C )  =  (
sum_ k  e.  A  C  +  sum_ k  e.  B  C )
3635a1i 9 . 2  |-  ( ph  ->  ( sum_ j  e.  A  [_ j  /  k ]_ C  +  sum_ j  e.  B  [_ j  / 
k ]_ C )  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
377, 22, 363eqtrd 2194 1  |-  ( ph  -> 
sum_ k  e.  U  C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335   F/wnf 1440    e. wcel 2128   [_csb 3031    u. cun 3100    i^i cin 3101   (/)c0 3395  (class class class)co 5826   Fincfn 6687   CCcc 7732    + caddc 7737   sum_csu 11261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852  ax-arch 7853  ax-caucvg 7854
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-id 4255  df-po 4258  df-iso 4259  df-iord 4328  df-on 4330  df-ilim 4331  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-isom 5181  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-irdg 6319  df-frec 6340  df-1o 6365  df-oadd 6369  df-er 6482  df-en 6688  df-dom 6689  df-fin 6690  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550  df-inn 8839  df-2 8897  df-3 8898  df-4 8899  df-n0 9096  df-z 9173  df-uz 9445  df-q 9535  df-rp 9567  df-fz 9919  df-fzo 10051  df-seqfrec 10354  df-exp 10428  df-ihash 10661  df-cj 10753  df-re 10754  df-im 10755  df-rsqrt 10909  df-abs 10910  df-clim 11187  df-sumdc 11262
This theorem is referenced by:  fsumsplitsn  11318
  Copyright terms: Public domain W3C validator