ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctlemfo Unicode version

Theorem ctiunctlemfo 11988
Description: Lemma for ctiunct 11989. (Contributed by Jim Kingdon, 28-Oct-2023.)
Hypotheses
Ref Expression
ctiunct.som  |-  ( ph  ->  S  C_  om )
ctiunct.sdc  |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )
ctiunct.f  |-  ( ph  ->  F : S -onto-> A
)
ctiunct.tom  |-  ( (
ph  /\  x  e.  A )  ->  T  C_ 
om )
ctiunct.tdc  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  T )
ctiunct.g  |-  ( (
ph  /\  x  e.  A )  ->  G : T -onto-> B )
ctiunct.j  |-  ( ph  ->  J : om -1-1-onto-> ( om  X.  om ) )
ctiunct.u  |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z
) )  e.  S  /\  ( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T ) }
ctiunct.h  |-  H  =  ( n  e.  U  |->  ( [_ ( F `
 ( 1st `  ( J `  n )
) )  /  x ]_ G `  ( 2nd `  ( J `  n
) ) ) )
ctiunct.nfh  |-  F/_ x H
ctiunct.nfu  |-  F/_ x U
Assertion
Ref Expression
ctiunctlemfo  |-  ( ph  ->  H : U -onto-> U_ x  e.  A  B
)
Distinct variable groups:    A, n, x    B, n    n, F, x, z    n, G    n, J, x, z    z, S   
z, T    U, n    ph, n, x    z, n
Allowed substitution hints:    ph( z)    A( z)    B( x, z)    S( x, n)    T( x, n)    U( x, z)    G( x, z)    H( x, z, n)

Proof of Theorem ctiunctlemfo
Dummy variables  r  w  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctiunct.som . . 3  |-  ( ph  ->  S  C_  om )
2 ctiunct.sdc . . 3  |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )
3 ctiunct.f . . 3  |-  ( ph  ->  F : S -onto-> A
)
4 ctiunct.tom . . 3  |-  ( (
ph  /\  x  e.  A )  ->  T  C_ 
om )
5 ctiunct.tdc . . 3  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  T )
6 ctiunct.g . . 3  |-  ( (
ph  /\  x  e.  A )  ->  G : T -onto-> B )
7 ctiunct.j . . 3  |-  ( ph  ->  J : om -1-1-onto-> ( om  X.  om ) )
8 ctiunct.u . . 3  |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z
) )  e.  S  /\  ( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T ) }
9 ctiunct.h . . 3  |-  H  =  ( n  e.  U  |->  ( [_ ( F `
 ( 1st `  ( J `  n )
) )  /  x ]_ G `  ( 2nd `  ( J `  n
) ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9ctiunctlemf 11987 . 2  |-  ( ph  ->  H : U --> U_ x  e.  A  B )
11 nfv 1509 . . . . 5  |-  F/ x ph
12 nfiu1 3851 . . . . . 6  |-  F/_ x U_ x  e.  A  B
1312nfcri 2276 . . . . 5  |-  F/ x  u  e.  U_ x  e.  A  B
1411, 13nfan 1545 . . . 4  |-  F/ x
( ph  /\  u  e.  U_ x  e.  A  B )
15 ctiunct.nfu . . . . 5  |-  F/_ x U
16 ctiunct.nfh . . . . . . 7  |-  F/_ x H
17 nfcv 2282 . . . . . . 7  |-  F/_ x
v
1816, 17nffv 5439 . . . . . 6  |-  F/_ x
( H `  v
)
1918nfeq2 2294 . . . . 5  |-  F/ x  u  =  ( H `  v )
2015, 19nfrexxy 2475 . . . 4  |-  F/ x E. v  e.  U  u  =  ( H `  v )
21 simplll 523 . . . . . . 7  |-  ( ( ( ( ph  /\  u  e.  U_ x  e.  A  B )  /\  x  e.  A )  /\  u  e.  B
)  ->  ph )
22 simplr 520 . . . . . . 7  |-  ( ( ( ( ph  /\  u  e.  U_ x  e.  A  B )  /\  x  e.  A )  /\  u  e.  B
)  ->  x  e.  A )
2321, 22, 6syl2anc 409 . . . . . 6  |-  ( ( ( ( ph  /\  u  e.  U_ x  e.  A  B )  /\  x  e.  A )  /\  u  e.  B
)  ->  G : T -onto-> B )
24 foelrn 5662 . . . . . 6  |-  ( ( G : T -onto-> B  /\  u  e.  B
)  ->  E. w  e.  T  u  =  ( G `  w ) )
2523, 24sylancom 417 . . . . 5  |-  ( ( ( ( ph  /\  u  e.  U_ x  e.  A  B )  /\  x  e.  A )  /\  u  e.  B
)  ->  E. w  e.  T  u  =  ( G `  w ) )
263ad4antr 486 . . . . . . 7  |-  ( ( ( ( ( ph  /\  u  e.  U_ x  e.  A  B )  /\  x  e.  A
)  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  ->  F : S -onto-> A )
27 simpllr 524 . . . . . . 7  |-  ( ( ( ( ( ph  /\  u  e.  U_ x  e.  A  B )  /\  x  e.  A
)  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  ->  x  e.  A
)
28 foelrn 5662 . . . . . . 7  |-  ( ( F : S -onto-> A  /\  x  e.  A
)  ->  E. r  e.  S  x  =  ( F `  r ) )
2926, 27, 28syl2anc 409 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  U_ x  e.  A  B )  /\  x  e.  A
)  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  ->  E. r  e.  S  x  =  ( F `  r ) )
30 f1ocnv 5388 . . . . . . . . . . . 12  |-  ( J : om -1-1-onto-> ( om  X.  om )  ->  `' J :
( om  X.  om )
-1-1-onto-> om )
317, 30syl 14 . . . . . . . . . . 11  |-  ( ph  ->  `' J : ( om 
X.  om ) -1-1-onto-> om )
32 f1of 5375 . . . . . . . . . . 11  |-  ( `' J : ( om 
X.  om ) -1-1-onto-> om  ->  `' J : ( om  X.  om ) --> om )
3331, 32syl 14 . . . . . . . . . 10  |-  ( ph  ->  `' J : ( om 
X.  om ) --> om )
3433ad5antr 488 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  `' J : ( om 
X.  om ) --> om )
351ad5antr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  S  C_  om )
36 simprl 521 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
r  e.  S )
3735, 36sseldd 3103 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
r  e.  om )
38 simp-5l 533 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  ph )
3927adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  x  e.  A )
4038, 39, 4syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  T  C_  om )
41 simplrl 525 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  w  e.  T )
4240, 41sseldd 3103 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  w  e.  om )
4337, 42opelxpd 4580 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  <. r ,  w >.  e.  ( om  X.  om ) )
4434, 43ffvelrnd 5564 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( `' J `  <. r ,  w >. )  e.  om )
4538, 7syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  J : om -1-1-onto-> ( om  X.  om ) )
46 f1ocnvfv2 5687 . . . . . . . . . . . . 13  |-  ( ( J : om -1-1-onto-> ( om  X.  om )  /\  <. r ,  w >.  e.  ( om  X.  om ) )  ->  ( J `  ( `' J `  <. r ,  w >. ) )  = 
<. r ,  w >. )
4745, 43, 46syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( J `  ( `' J `  <. r ,  w >. ) )  = 
<. r ,  w >. )
4847fveq2d 5433 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) )  =  ( 1st `  <. r ,  w >. )
)
49 vex 2692 . . . . . . . . . . . 12  |-  r  e. 
_V
50 vex 2692 . . . . . . . . . . . 12  |-  w  e. 
_V
5149, 50op1st 6052 . . . . . . . . . . 11  |-  ( 1st `  <. r ,  w >. )  =  r
5248, 51eqtrdi 2189 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) )  =  r )
5352, 36eqeltrd 2217 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) )  e.  S )
5447fveq2d 5433 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( 2nd `  ( J `  ( `' J `  <. r ,  w >. ) ) )  =  ( 2nd `  <. r ,  w >. )
)
5549, 50op2nd 6053 . . . . . . . . . . 11  |-  ( 2nd `  <. r ,  w >. )  =  w
5654, 55eqtrdi 2189 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( 2nd `  ( J `  ( `' J `  <. r ,  w >. ) ) )  =  w )
5752fveq2d 5433 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( F `  ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  =  ( F `
 r ) )
58 simprr 522 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  x  =  ( F `  r ) )
5957, 58eqtr4d 2176 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( F `  ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  =  x )
6059csbeq1d 3014 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  [_ ( F `  ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ T  =  [_ x  /  x ]_ T )
61 csbid 3015 . . . . . . . . . . 11  |-  [_ x  /  x ]_ T  =  T
6260, 61eqtrdi 2189 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  [_ ( F `  ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ T  =  T )
6341, 56, 623eltr4d 2224 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( 2nd `  ( J `  ( `' J `  <. r ,  w >. ) ) )  e.  [_ ( F `
 ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ T )
6453, 63jca 304 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) )  e.  S  /\  ( 2nd `  ( J `  ( `' J `  <. r ,  w >. ) ) )  e.  [_ ( F `
 ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ T ) )
65 2fveq3 5434 . . . . . . . . . . 11  |-  ( z  =  ( `' J `  <. r ,  w >. )  ->  ( 1st `  ( J `  z
) )  =  ( 1st `  ( J `
 ( `' J `  <. r ,  w >. ) ) ) )
6665eleq1d 2209 . . . . . . . . . 10  |-  ( z  =  ( `' J `  <. r ,  w >. )  ->  ( ( 1st `  ( J `  z ) )  e.  S  <->  ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) )  e.  S ) )
67 2fveq3 5434 . . . . . . . . . . 11  |-  ( z  =  ( `' J `  <. r ,  w >. )  ->  ( 2nd `  ( J `  z
) )  =  ( 2nd `  ( J `
 ( `' J `  <. r ,  w >. ) ) ) )
6865fveq2d 5433 . . . . . . . . . . . 12  |-  ( z  =  ( `' J `  <. r ,  w >. )  ->  ( F `  ( 1st `  ( J `  z )
) )  =  ( F `  ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) ) )
6968csbeq1d 3014 . . . . . . . . . . 11  |-  ( z  =  ( `' J `  <. r ,  w >. )  ->  [_ ( F `
 ( 1st `  ( J `  z )
) )  /  x ]_ T  =  [_ ( F `  ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ T )
7067, 69eleq12d 2211 . . . . . . . . . 10  |-  ( z  =  ( `' J `  <. r ,  w >. )  ->  ( ( 2nd `  ( J `  z ) )  e. 
[_ ( F `  ( 1st `  ( J `
 z ) ) )  /  x ]_ T 
<->  ( 2nd `  ( J `  ( `' J `  <. r ,  w >. ) ) )  e.  [_ ( F `
 ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ T ) )
7166, 70anbi12d 465 . . . . . . . . 9  |-  ( z  =  ( `' J `  <. r ,  w >. )  ->  ( (
( 1st `  ( J `  z )
)  e.  S  /\  ( 2nd `  ( J `
 z ) )  e.  [_ ( F `
 ( 1st `  ( J `  z )
) )  /  x ]_ T )  <->  ( ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) )  e.  S  /\  ( 2nd `  ( J `  ( `' J `  <. r ,  w >. ) ) )  e.  [_ ( F `
 ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ T ) ) )
7271, 8elrab2 2847 . . . . . . . 8  |-  ( ( `' J `  <. r ,  w >. )  e.  U  <->  ( ( `' J `  <. r ,  w >. )  e.  om  /\  (
( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) )  e.  S  /\  ( 2nd `  ( J `  ( `' J `  <. r ,  w >. ) ) )  e.  [_ ( F `
 ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ T ) ) )
7344, 64, 72sylanbrc 414 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( `' J `  <. r ,  w >. )  e.  U )
7459csbeq1d 3014 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  [_ ( F `  ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ G  =  [_ x  /  x ]_ G )
75 csbid 3015 . . . . . . . . . 10  |-  [_ x  /  x ]_ G  =  G
7674, 75eqtrdi 2189 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  [_ ( F `  ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ G  =  G )
7776, 56fveq12d 5436 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( [_ ( F `  ( 1st `  ( J `
 ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ G `  ( 2nd `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  =  ( G `
 w ) )
78 2fveq3 5434 . . . . . . . . . . . 12  |-  ( n  =  ( `' J `  <. r ,  w >. )  ->  ( 1st `  ( J `  n
) )  =  ( 1st `  ( J `
 ( `' J `  <. r ,  w >. ) ) ) )
7978fveq2d 5433 . . . . . . . . . . 11  |-  ( n  =  ( `' J `  <. r ,  w >. )  ->  ( F `  ( 1st `  ( J `  n )
) )  =  ( F `  ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) ) )
8079csbeq1d 3014 . . . . . . . . . 10  |-  ( n  =  ( `' J `  <. r ,  w >. )  ->  [_ ( F `
 ( 1st `  ( J `  n )
) )  /  x ]_ G  =  [_ ( F `  ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ G )
81 2fveq3 5434 . . . . . . . . . 10  |-  ( n  =  ( `' J `  <. r ,  w >. )  ->  ( 2nd `  ( J `  n
) )  =  ( 2nd `  ( J `
 ( `' J `  <. r ,  w >. ) ) ) )
8280, 81fveq12d 5436 . . . . . . . . 9  |-  ( n  =  ( `' J `  <. r ,  w >. )  ->  ( [_ ( F `  ( 1st `  ( J `  n
) ) )  /  x ]_ G `  ( 2nd `  ( J `  n ) ) )  =  ( [_ ( F `  ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ G `  ( 2nd `  ( J `  ( `' J `  <. r ,  w >. ) ) ) ) )
83 simplrr 526 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  u  =  ( G `  w ) )
8483, 77eqtr4d 2176 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  u  =  ( [_ ( F `  ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ G `  ( 2nd `  ( J `  ( `' J `  <. r ,  w >. ) ) ) ) )
85 simpllr 524 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  u  e.  B )
8684, 85eqeltrrd 2218 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( [_ ( F `  ( 1st `  ( J `
 ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ G `  ( 2nd `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  e.  B )
879, 82, 73, 86fvmptd3 5522 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  -> 
( H `  ( `' J `  <. r ,  w >. ) )  =  ( [_ ( F `
 ( 1st `  ( J `  ( `' J `  <. r ,  w >. ) ) ) )  /  x ]_ G `  ( 2nd `  ( J `  ( `' J `  <. r ,  w >. ) ) ) ) )
8877, 87, 833eqtr4rd 2184 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  u  =  ( H `  ( `' J `  <. r ,  w >. ) ) )
89 fveq2 5429 . . . . . . . 8  |-  ( v  =  ( `' J `  <. r ,  w >. )  ->  ( H `  v )  =  ( H `  ( `' J `  <. r ,  w >. ) ) )
9089rspceeqv 2811 . . . . . . 7  |-  ( ( ( `' J `  <. r ,  w >. )  e.  U  /\  u  =  ( H `  ( `' J `  <. r ,  w >. ) ) )  ->  E. v  e.  U  u  =  ( H `  v ) )
9173, 88, 90syl2anc 409 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  u  e.  U_ x  e.  A  B
)  /\  x  e.  A )  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  /\  ( r  e.  S  /\  x  =  ( F `  r
) ) )  ->  E. v  e.  U  u  =  ( H `  v ) )
9229, 91rexlimddv 2557 . . . . 5  |-  ( ( ( ( ( ph  /\  u  e.  U_ x  e.  A  B )  /\  x  e.  A
)  /\  u  e.  B )  /\  (
w  e.  T  /\  u  =  ( G `  w ) ) )  ->  E. v  e.  U  u  =  ( H `  v ) )
9325, 92rexlimddv 2557 . . . 4  |-  ( ( ( ( ph  /\  u  e.  U_ x  e.  A  B )  /\  x  e.  A )  /\  u  e.  B
)  ->  E. v  e.  U  u  =  ( H `  v ) )
94 eliun 3825 . . . . . 6  |-  ( u  e.  U_ x  e.  A  B  <->  E. x  e.  A  u  e.  B )
9594biimpi 119 . . . . 5  |-  ( u  e.  U_ x  e.  A  B  ->  E. x  e.  A  u  e.  B )
9695adantl 275 . . . 4  |-  ( (
ph  /\  u  e.  U_ x  e.  A  B
)  ->  E. x  e.  A  u  e.  B )
9714, 20, 93, 96r19.29af2 2575 . . 3  |-  ( (
ph  /\  u  e.  U_ x  e.  A  B
)  ->  E. v  e.  U  u  =  ( H `  v ) )
9897ralrimiva 2508 . 2  |-  ( ph  ->  A. u  e.  U_  x  e.  A  B E. v  e.  U  u  =  ( H `  v ) )
99 dffo3 5575 . 2  |-  ( H : U -onto-> U_ x  e.  A  B  <->  ( H : U --> U_ x  e.  A  B  /\  A. u  e. 
U_  x  e.  A  B E. v  e.  U  u  =  ( H `  v ) ) )
10010, 98, 99sylanbrc 414 1  |-  ( ph  ->  H : U -onto-> U_ x  e.  A  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 820    = wceq 1332    e. wcel 1481   F/_wnfc 2269   A.wral 2417   E.wrex 2418   {crab 2421   [_csb 3007    C_ wss 3076   <.cop 3535   U_ciun 3821    |-> cmpt 3997   omcom 4512    X. cxp 4545   `'ccnv 4546   -->wf 5127   -onto->wfo 5129   -1-1-onto->wf1o 5130   ` cfv 5131   1stc1st 6044   2ndc2nd 6045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047
This theorem is referenced by:  ctiunct  11989
  Copyright terms: Public domain W3C validator