Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfif6 | Unicode version |
Description: An alternate definition of the conditional operator df-if 3527 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
dfif6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unab 3394 | . 2 | |
2 | df-rab 2457 | . . 3 | |
3 | df-rab 2457 | . . 3 | |
4 | 2, 3 | uneq12i 3279 | . 2 |
5 | df-if 3527 | . 2 | |
6 | 1, 4, 5 | 3eqtr4ri 2202 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wo 703 wceq 1348 wcel 2141 cab 2156 crab 2452 cun 3119 cif 3526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-un 3125 df-if 3527 |
This theorem is referenced by: ifeq1 3529 ifeq2 3530 dfif3 3539 ifssun 3540 |
Copyright terms: Public domain | W3C validator |