ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfif6 Unicode version

Theorem dfif6 3415
Description: An alternate definition of the conditional operator df-if 3414 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfif6  |-  if (
ph ,  A ,  B )  =  ( { x  e.  A  |  ph }  u.  {
x  e.  B  |  -.  ph } )
Distinct variable groups:    ph, x    x, A    x, B

Proof of Theorem dfif6
StepHypRef Expression
1 unab 3282 . 2  |-  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  B  /\  -.  ph ) } )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
2 df-rab 2379 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
3 df-rab 2379 . . 3  |-  { x  e.  B  |  -.  ph }  =  { x  |  ( x  e.  B  /\  -.  ph ) }
42, 3uneq12i 3167 . 2  |-  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  -.  ph } )  =  ( { x  |  ( x  e.  A  /\  ph ) }  u.  {
x  |  ( x  e.  B  /\  -.  ph ) } )
5 df-if 3414 . 2  |-  if (
ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
61, 4, 53eqtr4ri 2126 1  |-  if (
ph ,  A ,  B )  =  ( { x  e.  A  |  ph }  u.  {
x  e.  B  |  -.  ph } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    \/ wo 667    = wceq 1296    e. wcel 1445   {cab 2081   {crab 2374    u. cun 3011   ifcif 3413
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rab 2379  df-v 2635  df-un 3017  df-if 3414
This theorem is referenced by:  ifeq1  3416  ifeq2  3417  dfif3  3426
  Copyright terms: Public domain W3C validator