ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfif6 Unicode version

Theorem dfif6 3581
Description: An alternate definition of the conditional operator df-if 3580 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfif6  |-  if (
ph ,  A ,  B )  =  ( { x  e.  A  |  ph }  u.  {
x  e.  B  |  -.  ph } )
Distinct variable groups:    ph, x    x, A    x, B

Proof of Theorem dfif6
StepHypRef Expression
1 unab 3448 . 2  |-  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  B  /\  -.  ph ) } )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
2 df-rab 2495 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
3 df-rab 2495 . . 3  |-  { x  e.  B  |  -.  ph }  =  { x  |  ( x  e.  B  /\  -.  ph ) }
42, 3uneq12i 3333 . 2  |-  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  -.  ph } )  =  ( { x  |  ( x  e.  A  /\  ph ) }  u.  {
x  |  ( x  e.  B  /\  -.  ph ) } )
5 df-if 3580 . 2  |-  if (
ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
61, 4, 53eqtr4ri 2239 1  |-  if (
ph ,  A ,  B )  =  ( { x  e.  A  |  ph }  u.  {
x  e.  B  |  -.  ph } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   {cab 2193   {crab 2490    u. cun 3172   ifcif 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778  df-un 3178  df-if 3580
This theorem is referenced by:  ifeq1  3582  ifeq2  3583  dfif3  3593  ifssun  3594
  Copyright terms: Public domain W3C validator