ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unab Unicode version

Theorem unab 3404
Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unab  |-  ( { x  |  ph }  u.  { x  |  ps } )  =  {
x  |  ( ph  \/  ps ) }

Proof of Theorem unab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbor 1954 . . 3  |-  ( [ y  /  x ]
( ph  \/  ps ) 
<->  ( [ y  /  x ] ph  \/  [
y  /  x ] ps ) )
2 df-clab 2164 . . 3  |-  ( y  e.  { x  |  ( ph  \/  ps ) }  <->  [ y  /  x ] ( ph  \/  ps ) )
3 df-clab 2164 . . . 4  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
4 df-clab 2164 . . . 4  |-  ( y  e.  { x  |  ps }  <->  [ y  /  x ] ps )
53, 4orbi12i 764 . . 3  |-  ( ( y  e.  { x  |  ph }  \/  y  e.  { x  |  ps } )  <->  ( [
y  /  x ] ph  \/  [ y  /  x ] ps ) )
61, 2, 53bitr4ri 213 . 2  |-  ( ( y  e.  { x  |  ph }  \/  y  e.  { x  |  ps } )  <->  y  e.  { x  |  ( ph  \/  ps ) } )
76uneqri 3279 1  |-  ( { x  |  ph }  u.  { x  |  ps } )  =  {
x  |  ( ph  \/  ps ) }
Colors of variables: wff set class
Syntax hints:    \/ wo 708    = wceq 1353   [wsb 1762    e. wcel 2148   {cab 2163    u. cun 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135
This theorem is referenced by:  unrab  3408  rabun2  3416  dfif6  3538  unopab  4084  dmun  4836  frecabex  6401
  Copyright terms: Public domain W3C validator