ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unab Unicode version

Theorem unab 3439
Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unab  |-  ( { x  |  ph }  u.  { x  |  ps } )  =  {
x  |  ( ph  \/  ps ) }

Proof of Theorem unab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbor 1981 . . 3  |-  ( [ y  /  x ]
( ph  \/  ps ) 
<->  ( [ y  /  x ] ph  \/  [
y  /  x ] ps ) )
2 df-clab 2191 . . 3  |-  ( y  e.  { x  |  ( ph  \/  ps ) }  <->  [ y  /  x ] ( ph  \/  ps ) )
3 df-clab 2191 . . . 4  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
4 df-clab 2191 . . . 4  |-  ( y  e.  { x  |  ps }  <->  [ y  /  x ] ps )
53, 4orbi12i 765 . . 3  |-  ( ( y  e.  { x  |  ph }  \/  y  e.  { x  |  ps } )  <->  ( [
y  /  x ] ph  \/  [ y  /  x ] ps ) )
61, 2, 53bitr4ri 213 . 2  |-  ( ( y  e.  { x  |  ph }  \/  y  e.  { x  |  ps } )  <->  y  e.  { x  |  ( ph  \/  ps ) } )
76uneqri 3314 1  |-  ( { x  |  ph }  u.  { x  |  ps } )  =  {
x  |  ( ph  \/  ps ) }
Colors of variables: wff set class
Syntax hints:    \/ wo 709    = wceq 1372   [wsb 1784    e. wcel 2175   {cab 2190    u. cun 3163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169
This theorem is referenced by:  unrab  3443  rabun2  3451  dfif6  3572  unopab  4122  dmun  4884  frecabex  6483  fngsum  13191  igsumvalx  13192
  Copyright terms: Public domain W3C validator