Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  unab Unicode version

Theorem unab 3338
 Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unab

Proof of Theorem unab
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbor 1925 . . 3
2 df-clab 2124 . . 3
3 df-clab 2124 . . . 4
4 df-clab 2124 . . . 4
53, 4orbi12i 753 . . 3
61, 2, 53bitr4ri 212 . 2
76uneqri 3213 1
 Colors of variables: wff set class Syntax hints:   wo 697   wceq 1331   wcel 1480  wsb 1735  cab 2123   cun 3064 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-un 3070 This theorem is referenced by:  unrab  3342  rabun2  3350  dfif6  3471  unopab  4002  dmun  4741  frecabex  6288
 Copyright terms: Public domain W3C validator