| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1on | Unicode version | ||
| Description: The power set of |
| Ref | Expression |
|---|---|
| pw1on |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6487 |
. . . . . 6
| |
| 2 | elsni 3640 |
. . . . . . . 8
| |
| 3 | 0elpw 4197 |
. . . . . . . 8
| |
| 4 | 2, 3 | eqeltrdi 2287 |
. . . . . . 7
|
| 5 | 4 | ssriv 3187 |
. . . . . 6
|
| 6 | 1, 5 | eqsstri 3215 |
. . . . 5
|
| 7 | sspwb 4249 |
. . . . 5
| |
| 8 | 6, 7 | mpbi 145 |
. . . 4
|
| 9 | dftr4 4136 |
. . . 4
| |
| 10 | 8, 9 | mpbir 146 |
. . 3
|
| 11 | elpwi 3614 |
. . . . . . . . 9
| |
| 12 | 11 | sselda 3183 |
. . . . . . . 8
|
| 13 | el1o 6495 |
. . . . . . . 8
| |
| 14 | 12, 13 | sylib 122 |
. . . . . . 7
|
| 15 | 0ss 3489 |
. . . . . . 7
| |
| 16 | 14, 15 | eqsstrdi 3235 |
. . . . . 6
|
| 17 | 16 | ralrimiva 2570 |
. . . . 5
|
| 18 | dftr3 4135 |
. . . . 5
| |
| 19 | 17, 18 | sylibr 134 |
. . . 4
|
| 20 | 19 | rgen 2550 |
. . 3
|
| 21 | dford3 4402 |
. . 3
| |
| 22 | 10, 20, 21 | mpbir2an 944 |
. 2
|
| 23 | 1oex 6482 |
. . 3
| |
| 24 | 23 | pwex 4216 |
. 2
|
| 25 | elon2 4411 |
. 2
| |
| 26 | 22, 24, 25 | mpbir2an 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-1o 6474 |
| This theorem is referenced by: pw1ne1 7296 sucpw1nss3 7302 onntri35 7304 onntri45 7308 |
| Copyright terms: Public domain | W3C validator |