ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1on Unicode version

Theorem pw1on 7203
Description: The power set of  1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
Assertion
Ref Expression
pw1on  |-  ~P 1o  e.  On

Proof of Theorem pw1on
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 6408 . . . . . 6  |-  1o  =  { (/) }
2 elsni 3601 . . . . . . . 8  |-  ( x  e.  { (/) }  ->  x  =  (/) )
3 0elpw 4150 . . . . . . . 8  |-  (/)  e.  ~P 1o
42, 3eqeltrdi 2261 . . . . . . 7  |-  ( x  e.  { (/) }  ->  x  e.  ~P 1o )
54ssriv 3151 . . . . . 6  |-  { (/) } 
C_  ~P 1o
61, 5eqsstri 3179 . . . . 5  |-  1o  C_  ~P 1o
7 sspwb 4201 . . . . 5  |-  ( 1o  C_  ~P 1o  <->  ~P 1o  C_ 
~P ~P 1o )
86, 7mpbi 144 . . . 4  |-  ~P 1o  C_ 
~P ~P 1o
9 dftr4 4092 . . . 4  |-  ( Tr 
~P 1o  <->  ~P 1o  C_ 
~P ~P 1o )
108, 9mpbir 145 . . 3  |-  Tr  ~P 1o
11 elpwi 3575 . . . . . . . . 9  |-  ( x  e.  ~P 1o  ->  x 
C_  1o )
1211sselda 3147 . . . . . . . 8  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  e.  1o )
13 el1o 6416 . . . . . . . 8  |-  ( y  e.  1o  <->  y  =  (/) )
1412, 13sylib 121 . . . . . . 7  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  =  (/) )
15 0ss 3453 . . . . . . 7  |-  (/)  C_  x
1614, 15eqsstrdi 3199 . . . . . 6  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  C_  x
)
1716ralrimiva 2543 . . . . 5  |-  ( x  e.  ~P 1o  ->  A. y  e.  x  y 
C_  x )
18 dftr3 4091 . . . . 5  |-  ( Tr  x  <->  A. y  e.  x  y  C_  x )
1917, 18sylibr 133 . . . 4  |-  ( x  e.  ~P 1o  ->  Tr  x )
2019rgen 2523 . . 3  |-  A. x  e.  ~P  1o Tr  x
21 dford3 4352 . . 3  |-  ( Ord 
~P 1o  <->  ( Tr  ~P 1o  /\  A. x  e.  ~P  1o Tr  x
) )
2210, 20, 21mpbir2an 937 . 2  |-  Ord  ~P 1o
23 1oex 6403 . . 3  |-  1o  e.  _V
2423pwex 4169 . 2  |-  ~P 1o  e.  _V
25 elon2 4361 . 2  |-  ( ~P 1o  e.  On  <->  ( Ord  ~P 1o  /\  ~P 1o  e.  _V ) )
2622, 24, 25mpbir2an 937 1  |-  ~P 1o  e.  On
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   _Vcvv 2730    C_ wss 3121   (/)c0 3414   ~Pcpw 3566   {csn 3583   Tr wtr 4087   Ord word 4347   Oncon0 4348   1oc1o 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-1o 6395
This theorem is referenced by:  pw1ne1  7206  sucpw1nss3  7212  onntri35  7214  onntri45  7218
  Copyright terms: Public domain W3C validator