| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1on | Unicode version | ||
| Description: The power set of |
| Ref | Expression |
|---|---|
| pw1on |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6514 |
. . . . . 6
| |
| 2 | elsni 3650 |
. . . . . . . 8
| |
| 3 | 0elpw 4207 |
. . . . . . . 8
| |
| 4 | 2, 3 | eqeltrdi 2295 |
. . . . . . 7
|
| 5 | 4 | ssriv 3196 |
. . . . . 6
|
| 6 | 1, 5 | eqsstri 3224 |
. . . . 5
|
| 7 | sspwb 4259 |
. . . . 5
| |
| 8 | 6, 7 | mpbi 145 |
. . . 4
|
| 9 | dftr4 4146 |
. . . 4
| |
| 10 | 8, 9 | mpbir 146 |
. . 3
|
| 11 | elpwi 3624 |
. . . . . . . . 9
| |
| 12 | 11 | sselda 3192 |
. . . . . . . 8
|
| 13 | el1o 6522 |
. . . . . . . 8
| |
| 14 | 12, 13 | sylib 122 |
. . . . . . 7
|
| 15 | 0ss 3498 |
. . . . . . 7
| |
| 16 | 14, 15 | eqsstrdi 3244 |
. . . . . 6
|
| 17 | 16 | ralrimiva 2578 |
. . . . 5
|
| 18 | dftr3 4145 |
. . . . 5
| |
| 19 | 17, 18 | sylibr 134 |
. . . 4
|
| 20 | 19 | rgen 2558 |
. . 3
|
| 21 | dford3 4413 |
. . 3
| |
| 22 | 10, 20, 21 | mpbir2an 944 |
. 2
|
| 23 | 1oex 6509 |
. . 3
| |
| 24 | 23 | pwex 4226 |
. 2
|
| 25 | elon2 4422 |
. 2
| |
| 26 | 22, 24, 25 | mpbir2an 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-tr 4142 df-iord 4412 df-on 4414 df-suc 4417 df-1o 6501 |
| This theorem is referenced by: pw1ne1 7340 sucpw1nss3 7346 onntri35 7348 onntri45 7352 |
| Copyright terms: Public domain | W3C validator |