| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1on | Unicode version | ||
| Description: The power set of |
| Ref | Expression |
|---|---|
| pw1on |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6538 |
. . . . . 6
| |
| 2 | elsni 3661 |
. . . . . . . 8
| |
| 3 | 0elpw 4224 |
. . . . . . . 8
| |
| 4 | 2, 3 | eqeltrdi 2298 |
. . . . . . 7
|
| 5 | 4 | ssriv 3205 |
. . . . . 6
|
| 6 | 1, 5 | eqsstri 3233 |
. . . . 5
|
| 7 | sspwb 4278 |
. . . . 5
| |
| 8 | 6, 7 | mpbi 145 |
. . . 4
|
| 9 | dftr4 4163 |
. . . 4
| |
| 10 | 8, 9 | mpbir 146 |
. . 3
|
| 11 | elpwi 3635 |
. . . . . . . . 9
| |
| 12 | 11 | sselda 3201 |
. . . . . . . 8
|
| 13 | el1o 6546 |
. . . . . . . 8
| |
| 14 | 12, 13 | sylib 122 |
. . . . . . 7
|
| 15 | 0ss 3507 |
. . . . . . 7
| |
| 16 | 14, 15 | eqsstrdi 3253 |
. . . . . 6
|
| 17 | 16 | ralrimiva 2581 |
. . . . 5
|
| 18 | dftr3 4162 |
. . . . 5
| |
| 19 | 17, 18 | sylibr 134 |
. . . 4
|
| 20 | 19 | rgen 2561 |
. . 3
|
| 21 | dford3 4432 |
. . 3
| |
| 22 | 10, 20, 21 | mpbir2an 945 |
. 2
|
| 23 | 1oex 6533 |
. . 3
| |
| 24 | 23 | pwex 4243 |
. 2
|
| 25 | elon2 4441 |
. 2
| |
| 26 | 22, 24, 25 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-1o 6525 |
| This theorem is referenced by: pw1ne1 7375 sucpw1nss3 7381 onntri35 7383 onntri45 7387 |
| Copyright terms: Public domain | W3C validator |