ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1on Unicode version

Theorem pw1on 7144
Description: The power set of  1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
Assertion
Ref Expression
pw1on  |-  ~P 1o  e.  On

Proof of Theorem pw1on
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 6370 . . . . . 6  |-  1o  =  { (/) }
2 elsni 3578 . . . . . . . 8  |-  ( x  e.  { (/) }  ->  x  =  (/) )
3 0elpw 4124 . . . . . . . 8  |-  (/)  e.  ~P 1o
42, 3eqeltrdi 2248 . . . . . . 7  |-  ( x  e.  { (/) }  ->  x  e.  ~P 1o )
54ssriv 3132 . . . . . 6  |-  { (/) } 
C_  ~P 1o
61, 5eqsstri 3160 . . . . 5  |-  1o  C_  ~P 1o
7 sspwb 4175 . . . . 5  |-  ( 1o  C_  ~P 1o  <->  ~P 1o  C_ 
~P ~P 1o )
86, 7mpbi 144 . . . 4  |-  ~P 1o  C_ 
~P ~P 1o
9 dftr4 4067 . . . 4  |-  ( Tr 
~P 1o  <->  ~P 1o  C_ 
~P ~P 1o )
108, 9mpbir 145 . . 3  |-  Tr  ~P 1o
11 elpwi 3552 . . . . . . . . 9  |-  ( x  e.  ~P 1o  ->  x 
C_  1o )
1211sselda 3128 . . . . . . . 8  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  e.  1o )
13 el1o 6378 . . . . . . . 8  |-  ( y  e.  1o  <->  y  =  (/) )
1412, 13sylib 121 . . . . . . 7  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  =  (/) )
15 0ss 3432 . . . . . . 7  |-  (/)  C_  x
1614, 15eqsstrdi 3180 . . . . . 6  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  C_  x
)
1716ralrimiva 2530 . . . . 5  |-  ( x  e.  ~P 1o  ->  A. y  e.  x  y 
C_  x )
18 dftr3 4066 . . . . 5  |-  ( Tr  x  <->  A. y  e.  x  y  C_  x )
1917, 18sylibr 133 . . . 4  |-  ( x  e.  ~P 1o  ->  Tr  x )
2019rgen 2510 . . 3  |-  A. x  e.  ~P  1o Tr  x
21 dford3 4326 . . 3  |-  ( Ord 
~P 1o  <->  ( Tr  ~P 1o  /\  A. x  e.  ~P  1o Tr  x
) )
2210, 20, 21mpbir2an 927 . 2  |-  Ord  ~P 1o
23 1oex 6365 . . 3  |-  1o  e.  _V
2423pwex 4143 . 2  |-  ~P 1o  e.  _V
25 elon2 4335 . 2  |-  ( ~P 1o  e.  On  <->  ( Ord  ~P 1o  /\  ~P 1o  e.  _V ) )
2622, 24, 25mpbir2an 927 1  |-  ~P 1o  e.  On
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1335    e. wcel 2128   A.wral 2435   _Vcvv 2712    C_ wss 3102   (/)c0 3394   ~Pcpw 3543   {csn 3560   Tr wtr 4062   Ord word 4321   Oncon0 4322   1oc1o 6350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-tr 4063  df-iord 4325  df-on 4327  df-suc 4330  df-1o 6357
This theorem is referenced by:  pw1ne1  7147  sucpw1nss3  7153  onntri35  7155  onntri45  7159
  Copyright terms: Public domain W3C validator