ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1on Unicode version

Theorem pw1on 7227
Description: The power set of  1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
Assertion
Ref Expression
pw1on  |-  ~P 1o  e.  On

Proof of Theorem pw1on
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 6432 . . . . . 6  |-  1o  =  { (/) }
2 elsni 3612 . . . . . . . 8  |-  ( x  e.  { (/) }  ->  x  =  (/) )
3 0elpw 4166 . . . . . . . 8  |-  (/)  e.  ~P 1o
42, 3eqeltrdi 2268 . . . . . . 7  |-  ( x  e.  { (/) }  ->  x  e.  ~P 1o )
54ssriv 3161 . . . . . 6  |-  { (/) } 
C_  ~P 1o
61, 5eqsstri 3189 . . . . 5  |-  1o  C_  ~P 1o
7 sspwb 4218 . . . . 5  |-  ( 1o  C_  ~P 1o  <->  ~P 1o  C_ 
~P ~P 1o )
86, 7mpbi 145 . . . 4  |-  ~P 1o  C_ 
~P ~P 1o
9 dftr4 4108 . . . 4  |-  ( Tr 
~P 1o  <->  ~P 1o  C_ 
~P ~P 1o )
108, 9mpbir 146 . . 3  |-  Tr  ~P 1o
11 elpwi 3586 . . . . . . . . 9  |-  ( x  e.  ~P 1o  ->  x 
C_  1o )
1211sselda 3157 . . . . . . . 8  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  e.  1o )
13 el1o 6440 . . . . . . . 8  |-  ( y  e.  1o  <->  y  =  (/) )
1412, 13sylib 122 . . . . . . 7  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  =  (/) )
15 0ss 3463 . . . . . . 7  |-  (/)  C_  x
1614, 15eqsstrdi 3209 . . . . . 6  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  C_  x
)
1716ralrimiva 2550 . . . . 5  |-  ( x  e.  ~P 1o  ->  A. y  e.  x  y 
C_  x )
18 dftr3 4107 . . . . 5  |-  ( Tr  x  <->  A. y  e.  x  y  C_  x )
1917, 18sylibr 134 . . . 4  |-  ( x  e.  ~P 1o  ->  Tr  x )
2019rgen 2530 . . 3  |-  A. x  e.  ~P  1o Tr  x
21 dford3 4369 . . 3  |-  ( Ord 
~P 1o  <->  ( Tr  ~P 1o  /\  A. x  e.  ~P  1o Tr  x
) )
2210, 20, 21mpbir2an 942 . 2  |-  Ord  ~P 1o
23 1oex 6427 . . 3  |-  1o  e.  _V
2423pwex 4185 . 2  |-  ~P 1o  e.  _V
25 elon2 4378 . 2  |-  ( ~P 1o  e.  On  <->  ( Ord  ~P 1o  /\  ~P 1o  e.  _V ) )
2622, 24, 25mpbir2an 942 1  |-  ~P 1o  e.  On
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2739    C_ wss 3131   (/)c0 3424   ~Pcpw 3577   {csn 3594   Tr wtr 4103   Ord word 4364   Oncon0 4365   1oc1o 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373  df-1o 6419
This theorem is referenced by:  pw1ne1  7230  sucpw1nss3  7236  onntri35  7238  onntri45  7242
  Copyright terms: Public domain W3C validator