ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1on Unicode version

Theorem pw1on 7182
Description: The power set of  1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
Assertion
Ref Expression
pw1on  |-  ~P 1o  e.  On

Proof of Theorem pw1on
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 6397 . . . . . 6  |-  1o  =  { (/) }
2 elsni 3594 . . . . . . . 8  |-  ( x  e.  { (/) }  ->  x  =  (/) )
3 0elpw 4143 . . . . . . . 8  |-  (/)  e.  ~P 1o
42, 3eqeltrdi 2257 . . . . . . 7  |-  ( x  e.  { (/) }  ->  x  e.  ~P 1o )
54ssriv 3146 . . . . . 6  |-  { (/) } 
C_  ~P 1o
61, 5eqsstri 3174 . . . . 5  |-  1o  C_  ~P 1o
7 sspwb 4194 . . . . 5  |-  ( 1o  C_  ~P 1o  <->  ~P 1o  C_ 
~P ~P 1o )
86, 7mpbi 144 . . . 4  |-  ~P 1o  C_ 
~P ~P 1o
9 dftr4 4085 . . . 4  |-  ( Tr 
~P 1o  <->  ~P 1o  C_ 
~P ~P 1o )
108, 9mpbir 145 . . 3  |-  Tr  ~P 1o
11 elpwi 3568 . . . . . . . . 9  |-  ( x  e.  ~P 1o  ->  x 
C_  1o )
1211sselda 3142 . . . . . . . 8  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  e.  1o )
13 el1o 6405 . . . . . . . 8  |-  ( y  e.  1o  <->  y  =  (/) )
1412, 13sylib 121 . . . . . . 7  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  =  (/) )
15 0ss 3447 . . . . . . 7  |-  (/)  C_  x
1614, 15eqsstrdi 3194 . . . . . 6  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  C_  x
)
1716ralrimiva 2539 . . . . 5  |-  ( x  e.  ~P 1o  ->  A. y  e.  x  y 
C_  x )
18 dftr3 4084 . . . . 5  |-  ( Tr  x  <->  A. y  e.  x  y  C_  x )
1917, 18sylibr 133 . . . 4  |-  ( x  e.  ~P 1o  ->  Tr  x )
2019rgen 2519 . . 3  |-  A. x  e.  ~P  1o Tr  x
21 dford3 4345 . . 3  |-  ( Ord 
~P 1o  <->  ( Tr  ~P 1o  /\  A. x  e.  ~P  1o Tr  x
) )
2210, 20, 21mpbir2an 932 . 2  |-  Ord  ~P 1o
23 1oex 6392 . . 3  |-  1o  e.  _V
2423pwex 4162 . 2  |-  ~P 1o  e.  _V
25 elon2 4354 . 2  |-  ( ~P 1o  e.  On  <->  ( Ord  ~P 1o  /\  ~P 1o  e.  _V ) )
2622, 24, 25mpbir2an 932 1  |-  ~P 1o  e.  On
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   _Vcvv 2726    C_ wss 3116   (/)c0 3409   ~Pcpw 3559   {csn 3576   Tr wtr 4080   Ord word 4340   Oncon0 4341   1oc1o 6377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349  df-1o 6384
This theorem is referenced by:  pw1ne1  7185  sucpw1nss3  7191  onntri35  7193  onntri45  7197
  Copyright terms: Public domain W3C validator