ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1on Unicode version

Theorem pw1on 7407
Description: The power set of  1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.)
Assertion
Ref Expression
pw1on  |-  ~P 1o  e.  On

Proof of Theorem pw1on
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 6573 . . . . . 6  |-  1o  =  { (/) }
2 elsni 3684 . . . . . . . 8  |-  ( x  e.  { (/) }  ->  x  =  (/) )
3 0elpw 4247 . . . . . . . 8  |-  (/)  e.  ~P 1o
42, 3eqeltrdi 2320 . . . . . . 7  |-  ( x  e.  { (/) }  ->  x  e.  ~P 1o )
54ssriv 3228 . . . . . 6  |-  { (/) } 
C_  ~P 1o
61, 5eqsstri 3256 . . . . 5  |-  1o  C_  ~P 1o
7 sspwb 4301 . . . . 5  |-  ( 1o  C_  ~P 1o  <->  ~P 1o  C_ 
~P ~P 1o )
86, 7mpbi 145 . . . 4  |-  ~P 1o  C_ 
~P ~P 1o
9 dftr4 4186 . . . 4  |-  ( Tr 
~P 1o  <->  ~P 1o  C_ 
~P ~P 1o )
108, 9mpbir 146 . . 3  |-  Tr  ~P 1o
11 elpwi 3658 . . . . . . . . 9  |-  ( x  e.  ~P 1o  ->  x 
C_  1o )
1211sselda 3224 . . . . . . . 8  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  e.  1o )
13 el1o 6581 . . . . . . . 8  |-  ( y  e.  1o  <->  y  =  (/) )
1412, 13sylib 122 . . . . . . 7  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  =  (/) )
15 0ss 3530 . . . . . . 7  |-  (/)  C_  x
1614, 15eqsstrdi 3276 . . . . . 6  |-  ( ( x  e.  ~P 1o  /\  y  e.  x )  ->  y  C_  x
)
1716ralrimiva 2603 . . . . 5  |-  ( x  e.  ~P 1o  ->  A. y  e.  x  y 
C_  x )
18 dftr3 4185 . . . . 5  |-  ( Tr  x  <->  A. y  e.  x  y  C_  x )
1917, 18sylibr 134 . . . 4  |-  ( x  e.  ~P 1o  ->  Tr  x )
2019rgen 2583 . . 3  |-  A. x  e.  ~P  1o Tr  x
21 dford3 4457 . . 3  |-  ( Ord 
~P 1o  <->  ( Tr  ~P 1o  /\  A. x  e.  ~P  1o Tr  x
) )
2210, 20, 21mpbir2an 948 . 2  |-  Ord  ~P 1o
23 1oex 6568 . . 3  |-  1o  e.  _V
2423pwex 4266 . 2  |-  ~P 1o  e.  _V
25 elon2 4466 . 2  |-  ( ~P 1o  e.  On  <->  ( Ord  ~P 1o  /\  ~P 1o  e.  _V ) )
2622, 24, 25mpbir2an 948 1  |-  ~P 1o  e.  On
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   (/)c0 3491   ~Pcpw 3649   {csn 3666   Tr wtr 4181   Ord word 4452   Oncon0 4453   1oc1o 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461  df-1o 6560
This theorem is referenced by:  pw1ne1  7410  sucpw1nss3  7416  onntri35  7418  onntri45  7422
  Copyright terms: Public domain W3C validator