ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1o Unicode version

Theorem dif1o 6496
Description: Two ways to say that  A is a nonzero number of the set  B. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
dif1o  |-  ( A  e.  ( B  \  1o )  <->  ( A  e.  B  /\  A  =/=  (/) ) )

Proof of Theorem dif1o
StepHypRef Expression
1 df1o2 6487 . . . 4  |-  1o  =  { (/) }
21difeq2i 3278 . . 3  |-  ( B 
\  1o )  =  ( B  \  { (/)
} )
32eleq2i 2263 . 2  |-  ( A  e.  ( B  \  1o )  <->  A  e.  ( B  \  { (/) } ) )
4 eldifsn 3749 . 2  |-  ( A  e.  ( B  \  { (/) } )  <->  ( A  e.  B  /\  A  =/=  (/) ) )
53, 4bitri 184 1  |-  ( A  e.  ( B  \  1o )  <->  ( A  e.  B  /\  A  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2167    =/= wne 2367    \ cdif 3154   (/)c0 3450   {csn 3622   1oc1o 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-sn 3628  df-suc 4406  df-1o 6474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator