ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1o Unicode version

Theorem dif1o 6584
Description: Two ways to say that  A is a nonzero number of the set  B. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
dif1o  |-  ( A  e.  ( B  \  1o )  <->  ( A  e.  B  /\  A  =/=  (/) ) )

Proof of Theorem dif1o
StepHypRef Expression
1 df1o2 6575 . . . 4  |-  1o  =  { (/) }
21difeq2i 3319 . . 3  |-  ( B 
\  1o )  =  ( B  \  { (/)
} )
32eleq2i 2296 . 2  |-  ( A  e.  ( B  \  1o )  <->  A  e.  ( B  \  { (/) } ) )
4 eldifsn 3795 . 2  |-  ( A  e.  ( B  \  { (/) } )  <->  ( A  e.  B  /\  A  =/=  (/) ) )
53, 4bitri 184 1  |-  ( A  e.  ( B  \  1o )  <->  ( A  e.  B  /\  A  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200    =/= wne 2400    \ cdif 3194   (/)c0 3491   {csn 3666   1oc1o 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-sn 3672  df-suc 4462  df-1o 6562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator