ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1o GIF version

Theorem dif1o 6429
Description: Two ways to say that 𝐴 is a nonzero number of the set 𝐵. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
dif1o (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴𝐵𝐴 ≠ ∅))

Proof of Theorem dif1o
StepHypRef Expression
1 df1o2 6420 . . . 4 1o = {∅}
21difeq2i 3248 . . 3 (𝐵 ∖ 1o) = (𝐵 ∖ {∅})
32eleq2i 2242 . 2 (𝐴 ∈ (𝐵 ∖ 1o) ↔ 𝐴 ∈ (𝐵 ∖ {∅}))
4 eldifsn 3716 . 2 (𝐴 ∈ (𝐵 ∖ {∅}) ↔ (𝐴𝐵𝐴 ≠ ∅))
53, 4bitri 184 1 (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴𝐵𝐴 ≠ ∅))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2146  wne 2345  cdif 3124  c0 3420  {csn 3589  1oc1o 6400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rab 2462  df-v 2737  df-dif 3129  df-un 3131  df-nul 3421  df-sn 3595  df-suc 4365  df-1o 6407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator