| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dif1o | GIF version | ||
| Description: Two ways to say that 𝐴 is a nonzero number of the set 𝐵. (Contributed by Mario Carneiro, 21-May-2015.) | 
| Ref | Expression | 
|---|---|
| dif1o | ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df1o2 6487 | . . . 4 ⊢ 1o = {∅} | |
| 2 | 1 | difeq2i 3278 | . . 3 ⊢ (𝐵 ∖ 1o) = (𝐵 ∖ {∅}) | 
| 3 | 2 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ 𝐴 ∈ (𝐵 ∖ {∅})) | 
| 4 | eldifsn 3749 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {∅}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) | |
| 5 | 3, 4 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ≠ wne 2367 ∖ cdif 3154 ∅c0 3450 {csn 3622 1oc1o 6467 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 df-sn 3628 df-suc 4406 df-1o 6474 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |