Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dif1o | GIF version |
Description: Two ways to say that 𝐴 is a nonzero number of the set 𝐵. (Contributed by Mario Carneiro, 21-May-2015.) |
Ref | Expression |
---|---|
dif1o | ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6408 | . . . 4 ⊢ 1o = {∅} | |
2 | 1 | difeq2i 3242 | . . 3 ⊢ (𝐵 ∖ 1o) = (𝐵 ∖ {∅}) |
3 | 2 | eleq2i 2237 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ 𝐴 ∈ (𝐵 ∖ {∅})) |
4 | eldifsn 3710 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {∅}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) | |
5 | 3, 4 | bitri 183 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2141 ≠ wne 2340 ∖ cdif 3118 ∅c0 3414 {csn 3583 1oc1o 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-nul 3415 df-sn 3589 df-suc 4356 df-1o 6395 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |