ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oconcl Unicode version

Theorem 2oconcl 6418
Description: Closure of the pair swapping function on  2o. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
2oconcl  |-  ( A  e.  2o  ->  ( 1o  \  A )  e.  2o )

Proof of Theorem 2oconcl
StepHypRef Expression
1 elpri 3606 . . . . 5  |-  ( A  e.  { (/) ,  1o }  ->  ( A  =  (/)  \/  A  =  1o ) )
2 difeq2 3239 . . . . . . . 8  |-  ( A  =  (/)  ->  ( 1o 
\  A )  =  ( 1o  \  (/) ) )
3 dif0 3485 . . . . . . . 8  |-  ( 1o 
\  (/) )  =  1o
42, 3eqtrdi 2219 . . . . . . 7  |-  ( A  =  (/)  ->  ( 1o 
\  A )  =  1o )
5 difeq2 3239 . . . . . . . 8  |-  ( A  =  1o  ->  ( 1o  \  A )  =  ( 1o  \  1o ) )
6 difid 3483 . . . . . . . 8  |-  ( 1o 
\  1o )  =  (/)
75, 6eqtrdi 2219 . . . . . . 7  |-  ( A  =  1o  ->  ( 1o  \  A )  =  (/) )
84, 7orim12i 754 . . . . . 6  |-  ( ( A  =  (/)  \/  A  =  1o )  ->  (
( 1o  \  A
)  =  1o  \/  ( 1o  \  A )  =  (/) ) )
98orcomd 724 . . . . 5  |-  ( ( A  =  (/)  \/  A  =  1o )  ->  (
( 1o  \  A
)  =  (/)  \/  ( 1o  \  A )  =  1o ) )
101, 9syl 14 . . . 4  |-  ( A  e.  { (/) ,  1o }  ->  ( ( 1o 
\  A )  =  (/)  \/  ( 1o  \  A )  =  1o ) )
11 1on 6402 . . . . . 6  |-  1o  e.  On
12 difexg 4130 . . . . . 6  |-  ( 1o  e.  On  ->  ( 1o  \  A )  e. 
_V )
1311, 12ax-mp 5 . . . . 5  |-  ( 1o 
\  A )  e. 
_V
1413elpr 3604 . . . 4  |-  ( ( 1o  \  A )  e.  { (/) ,  1o } 
<->  ( ( 1o  \  A )  =  (/)  \/  ( 1o  \  A
)  =  1o ) )
1510, 14sylibr 133 . . 3  |-  ( A  e.  { (/) ,  1o }  ->  ( 1o  \  A )  e.  { (/)
,  1o } )
16 df2o3 6409 . . 3  |-  2o  =  { (/) ,  1o }
1715, 16eleqtrrdi 2264 . 2  |-  ( A  e.  { (/) ,  1o }  ->  ( 1o  \  A )  e.  2o )
1817, 16eleq2s 2265 1  |-  ( A  e.  2o  ->  ( 1o  \  A )  e.  2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703    = wceq 1348    e. wcel 2141   _Vcvv 2730    \ cdif 3118   (/)c0 3414   {cpr 3584   Oncon0 4348   1oc1o 6388   2oc2o 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-1o 6395  df-2o 6396
This theorem is referenced by:  ismkvnex  7131
  Copyright terms: Public domain W3C validator