ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oconcl Unicode version

Theorem 2oconcl 6583
Description: Closure of the pair swapping function on  2o. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
2oconcl  |-  ( A  e.  2o  ->  ( 1o  \  A )  e.  2o )

Proof of Theorem 2oconcl
StepHypRef Expression
1 elpri 3689 . . . . 5  |-  ( A  e.  { (/) ,  1o }  ->  ( A  =  (/)  \/  A  =  1o ) )
2 difeq2 3316 . . . . . . . 8  |-  ( A  =  (/)  ->  ( 1o 
\  A )  =  ( 1o  \  (/) ) )
3 dif0 3562 . . . . . . . 8  |-  ( 1o 
\  (/) )  =  1o
42, 3eqtrdi 2278 . . . . . . 7  |-  ( A  =  (/)  ->  ( 1o 
\  A )  =  1o )
5 difeq2 3316 . . . . . . . 8  |-  ( A  =  1o  ->  ( 1o  \  A )  =  ( 1o  \  1o ) )
6 difid 3560 . . . . . . . 8  |-  ( 1o 
\  1o )  =  (/)
75, 6eqtrdi 2278 . . . . . . 7  |-  ( A  =  1o  ->  ( 1o  \  A )  =  (/) )
84, 7orim12i 764 . . . . . 6  |-  ( ( A  =  (/)  \/  A  =  1o )  ->  (
( 1o  \  A
)  =  1o  \/  ( 1o  \  A )  =  (/) ) )
98orcomd 734 . . . . 5  |-  ( ( A  =  (/)  \/  A  =  1o )  ->  (
( 1o  \  A
)  =  (/)  \/  ( 1o  \  A )  =  1o ) )
101, 9syl 14 . . . 4  |-  ( A  e.  { (/) ,  1o }  ->  ( ( 1o 
\  A )  =  (/)  \/  ( 1o  \  A )  =  1o ) )
11 1on 6567 . . . . . 6  |-  1o  e.  On
12 difexg 4224 . . . . . 6  |-  ( 1o  e.  On  ->  ( 1o  \  A )  e. 
_V )
1311, 12ax-mp 5 . . . . 5  |-  ( 1o 
\  A )  e. 
_V
1413elpr 3687 . . . 4  |-  ( ( 1o  \  A )  e.  { (/) ,  1o } 
<->  ( ( 1o  \  A )  =  (/)  \/  ( 1o  \  A
)  =  1o ) )
1510, 14sylibr 134 . . 3  |-  ( A  e.  { (/) ,  1o }  ->  ( 1o  \  A )  e.  { (/)
,  1o } )
16 df2o3 6574 . . 3  |-  2o  =  { (/) ,  1o }
1715, 16eleqtrrdi 2323 . 2  |-  ( A  e.  { (/) ,  1o }  ->  ( 1o  \  A )  e.  2o )
1817, 16eleq2s 2324 1  |-  ( A  e.  2o  ->  ( 1o  \  A )  e.  2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713    = wceq 1395    e. wcel 2200   _Vcvv 2799    \ cdif 3194   (/)c0 3491   {cpr 3667   Oncon0 4453   1oc1o 6553   2oc2o 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461  df-1o 6560  df-2o 6561
This theorem is referenced by:  ismkvnex  7318
  Copyright terms: Public domain W3C validator