ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oconcl Unicode version

Theorem 2oconcl 6464
Description: Closure of the pair swapping function on  2o. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
2oconcl  |-  ( A  e.  2o  ->  ( 1o  \  A )  e.  2o )

Proof of Theorem 2oconcl
StepHypRef Expression
1 elpri 3630 . . . . 5  |-  ( A  e.  { (/) ,  1o }  ->  ( A  =  (/)  \/  A  =  1o ) )
2 difeq2 3262 . . . . . . . 8  |-  ( A  =  (/)  ->  ( 1o 
\  A )  =  ( 1o  \  (/) ) )
3 dif0 3508 . . . . . . . 8  |-  ( 1o 
\  (/) )  =  1o
42, 3eqtrdi 2238 . . . . . . 7  |-  ( A  =  (/)  ->  ( 1o 
\  A )  =  1o )
5 difeq2 3262 . . . . . . . 8  |-  ( A  =  1o  ->  ( 1o  \  A )  =  ( 1o  \  1o ) )
6 difid 3506 . . . . . . . 8  |-  ( 1o 
\  1o )  =  (/)
75, 6eqtrdi 2238 . . . . . . 7  |-  ( A  =  1o  ->  ( 1o  \  A )  =  (/) )
84, 7orim12i 760 . . . . . 6  |-  ( ( A  =  (/)  \/  A  =  1o )  ->  (
( 1o  \  A
)  =  1o  \/  ( 1o  \  A )  =  (/) ) )
98orcomd 730 . . . . 5  |-  ( ( A  =  (/)  \/  A  =  1o )  ->  (
( 1o  \  A
)  =  (/)  \/  ( 1o  \  A )  =  1o ) )
101, 9syl 14 . . . 4  |-  ( A  e.  { (/) ,  1o }  ->  ( ( 1o 
\  A )  =  (/)  \/  ( 1o  \  A )  =  1o ) )
11 1on 6448 . . . . . 6  |-  1o  e.  On
12 difexg 4159 . . . . . 6  |-  ( 1o  e.  On  ->  ( 1o  \  A )  e. 
_V )
1311, 12ax-mp 5 . . . . 5  |-  ( 1o 
\  A )  e. 
_V
1413elpr 3628 . . . 4  |-  ( ( 1o  \  A )  e.  { (/) ,  1o } 
<->  ( ( 1o  \  A )  =  (/)  \/  ( 1o  \  A
)  =  1o ) )
1510, 14sylibr 134 . . 3  |-  ( A  e.  { (/) ,  1o }  ->  ( 1o  \  A )  e.  { (/)
,  1o } )
16 df2o3 6455 . . 3  |-  2o  =  { (/) ,  1o }
1715, 16eleqtrrdi 2283 . 2  |-  ( A  e.  { (/) ,  1o }  ->  ( 1o  \  A )  e.  2o )
1817, 16eleq2s 2284 1  |-  ( A  e.  2o  ->  ( 1o  \  A )  e.  2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1364    e. wcel 2160   _Vcvv 2752    \ cdif 3141   (/)c0 3437   {cpr 3608   Oncon0 4381   1oc1o 6434   2oc2o 6435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-uni 3825  df-tr 4117  df-iord 4384  df-on 4386  df-suc 4389  df-1o 6441  df-2o 6442
This theorem is referenced by:  ismkvnex  7183
  Copyright terms: Public domain W3C validator