ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdif2ss Unicode version

Theorem difdif2ss 3379
Description: Set difference with a set difference. In classical logic this would be equality rather than subset. (Contributed by Jim Kingdon, 27-Jul-2018.)
Assertion
Ref Expression
difdif2ss  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  ( A  \  ( B  \  C ) )

Proof of Theorem difdif2ss
StepHypRef Expression
1 inssdif 3358 . . . 4  |-  ( A  i^i  C )  C_  ( A  \  ( _V  \  C ) )
2 unss2 3293 . . . 4  |-  ( ( A  i^i  C ) 
C_  ( A  \ 
( _V  \  C
) )  ->  (
( A  \  B
)  u.  ( A  i^i  C ) ) 
C_  ( ( A 
\  B )  u.  ( A  \  ( _V  \  C ) ) ) )
31, 2ax-mp 5 . . 3  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  (
( A  \  B
)  u.  ( A 
\  ( _V  \  C ) ) )
4 difindiss 3376 . . 3  |-  ( ( A  \  B )  u.  ( A  \ 
( _V  \  C
) ) )  C_  ( A  \  ( B  i^i  ( _V  \  C ) ) )
53, 4sstri 3151 . 2  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  ( A  \  ( B  i^i  ( _V  \  C ) ) )
6 invdif 3364 . . . 4  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
76eqcomi 2169 . . 3  |-  ( B 
\  C )  =  ( B  i^i  ( _V  \  C ) )
87difeq2i 3237 . 2  |-  ( A 
\  ( B  \  C ) )  =  ( A  \  ( B  i^i  ( _V  \  C ) ) )
95, 8sseqtrri 3177 1  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  ( A  \  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2726    \ cdif 3113    u. cun 3114    i^i cin 3115    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator