ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdif2ss Unicode version

Theorem difdif2ss 3333
Description: Set difference with a set difference. In classical logic this would be equality rather than subset. (Contributed by Jim Kingdon, 27-Jul-2018.)
Assertion
Ref Expression
difdif2ss  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  ( A  \  ( B  \  C ) )

Proof of Theorem difdif2ss
StepHypRef Expression
1 inssdif 3312 . . . 4  |-  ( A  i^i  C )  C_  ( A  \  ( _V  \  C ) )
2 unss2 3247 . . . 4  |-  ( ( A  i^i  C ) 
C_  ( A  \ 
( _V  \  C
) )  ->  (
( A  \  B
)  u.  ( A  i^i  C ) ) 
C_  ( ( A 
\  B )  u.  ( A  \  ( _V  \  C ) ) ) )
31, 2ax-mp 5 . . 3  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  (
( A  \  B
)  u.  ( A 
\  ( _V  \  C ) ) )
4 difindiss 3330 . . 3  |-  ( ( A  \  B )  u.  ( A  \ 
( _V  \  C
) ) )  C_  ( A  \  ( B  i^i  ( _V  \  C ) ) )
53, 4sstri 3106 . 2  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  ( A  \  ( B  i^i  ( _V  \  C ) ) )
6 invdif 3318 . . . 4  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
76eqcomi 2143 . . 3  |-  ( B 
\  C )  =  ( B  i^i  ( _V  \  C ) )
87difeq2i 3191 . 2  |-  ( A 
\  ( B  \  C ) )  =  ( A  \  ( B  i^i  ( _V  \  C ) ) )
95, 8sseqtrri 3132 1  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  ( A  \  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2686    \ cdif 3068    u. cun 3069    i^i cin 3070    C_ wss 3071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator