ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdif2ss Unicode version

Theorem difdif2ss 3438
Description: Set difference with a set difference. In classical logic this would be equality rather than subset. (Contributed by Jim Kingdon, 27-Jul-2018.)
Assertion
Ref Expression
difdif2ss  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  ( A  \  ( B  \  C ) )

Proof of Theorem difdif2ss
StepHypRef Expression
1 inssdif 3417 . . . 4  |-  ( A  i^i  C )  C_  ( A  \  ( _V  \  C ) )
2 unss2 3352 . . . 4  |-  ( ( A  i^i  C ) 
C_  ( A  \ 
( _V  \  C
) )  ->  (
( A  \  B
)  u.  ( A  i^i  C ) ) 
C_  ( ( A 
\  B )  u.  ( A  \  ( _V  \  C ) ) ) )
31, 2ax-mp 5 . . 3  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  (
( A  \  B
)  u.  ( A 
\  ( _V  \  C ) ) )
4 difindiss 3435 . . 3  |-  ( ( A  \  B )  u.  ( A  \ 
( _V  \  C
) ) )  C_  ( A  \  ( B  i^i  ( _V  \  C ) ) )
53, 4sstri 3210 . 2  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  ( A  \  ( B  i^i  ( _V  \  C ) ) )
6 invdif 3423 . . . 4  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
76eqcomi 2211 . . 3  |-  ( B 
\  C )  =  ( B  i^i  ( _V  \  C ) )
87difeq2i 3296 . 2  |-  ( A 
\  ( B  \  C ) )  =  ( A  \  ( B  i^i  ( _V  \  C ) ) )
95, 8sseqtrri 3236 1  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  ( A  \  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2776    \ cdif 3171    u. cun 3172    i^i cin 3173    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator