| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difdif2ss | GIF version | ||
| Description: Set difference with a set difference. In classical logic this would be equality rather than subset. (Contributed by Jim Kingdon, 27-Jul-2018.) |
| Ref | Expression |
|---|---|
| difdif2ss | ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∖ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inssdif 3413 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ (𝐴 ∖ (V ∖ 𝐶)) | |
| 2 | unss2 3348 | . . . 4 ⊢ ((𝐴 ∩ 𝐶) ⊆ (𝐴 ∖ (V ∖ 𝐶)) → ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶)))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶))) |
| 4 | difindiss 3431 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶))) ⊆ (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) | |
| 5 | 3, 4 | sstri 3206 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) |
| 6 | invdif 3419 | . . . 4 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
| 7 | 6 | eqcomi 2210 | . . 3 ⊢ (𝐵 ∖ 𝐶) = (𝐵 ∩ (V ∖ 𝐶)) |
| 8 | 7 | difeq2i 3292 | . 2 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) |
| 9 | 5, 8 | sseqtrri 3232 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∖ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2773 ∖ cdif 3167 ∪ cun 3168 ∩ cin 3169 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |