| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difdif2ss | GIF version | ||
| Description: Set difference with a set difference. In classical logic this would be equality rather than subset. (Contributed by Jim Kingdon, 27-Jul-2018.) |
| Ref | Expression |
|---|---|
| difdif2ss | ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∖ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inssdif 3440 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ (𝐴 ∖ (V ∖ 𝐶)) | |
| 2 | unss2 3375 | . . . 4 ⊢ ((𝐴 ∩ 𝐶) ⊆ (𝐴 ∖ (V ∖ 𝐶)) → ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶)))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶))) |
| 4 | difindiss 3458 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶))) ⊆ (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) | |
| 5 | 3, 4 | sstri 3233 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) |
| 6 | invdif 3446 | . . . 4 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
| 7 | 6 | eqcomi 2233 | . . 3 ⊢ (𝐵 ∖ 𝐶) = (𝐵 ∩ (V ∖ 𝐶)) |
| 8 | 7 | difeq2i 3319 | . 2 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) |
| 9 | 5, 8 | sseqtrri 3259 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∖ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2799 ∖ cdif 3194 ∪ cun 3195 ∩ cin 3196 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |