| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > difdif2ss | GIF version | ||
| Description: Set difference with a set difference. In classical logic this would be equality rather than subset. (Contributed by Jim Kingdon, 27-Jul-2018.) | 
| Ref | Expression | 
|---|---|
| difdif2ss | ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∖ (𝐵 ∖ 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inssdif 3399 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ (𝐴 ∖ (V ∖ 𝐶)) | |
| 2 | unss2 3334 | . . . 4 ⊢ ((𝐴 ∩ 𝐶) ⊆ (𝐴 ∖ (V ∖ 𝐶)) → ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶)))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶))) | 
| 4 | difindiss 3417 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶))) ⊆ (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) | |
| 5 | 3, 4 | sstri 3192 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) | 
| 6 | invdif 3405 | . . . 4 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
| 7 | 6 | eqcomi 2200 | . . 3 ⊢ (𝐵 ∖ 𝐶) = (𝐵 ∩ (V ∖ 𝐶)) | 
| 8 | 7 | difeq2i 3278 | . 2 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) | 
| 9 | 5, 8 | sseqtrri 3218 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∖ (𝐵 ∖ 𝐶)) | 
| Colors of variables: wff set class | 
| Syntax hints: Vcvv 2763 ∖ cdif 3154 ∪ cun 3155 ∩ cin 3156 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |