![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difdif2ss | GIF version |
Description: Set difference with a set difference. In classical logic this would be equality rather than subset. (Contributed by Jim Kingdon, 27-Jul-2018.) |
Ref | Expression |
---|---|
difdif2ss | ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∖ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inssdif 3373 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ (𝐴 ∖ (V ∖ 𝐶)) | |
2 | unss2 3308 | . . . 4 ⊢ ((𝐴 ∩ 𝐶) ⊆ (𝐴 ∖ (V ∖ 𝐶)) → ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶)))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶))) |
4 | difindiss 3391 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶))) ⊆ (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) | |
5 | 3, 4 | sstri 3166 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) |
6 | invdif 3379 | . . . 4 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
7 | 6 | eqcomi 2181 | . . 3 ⊢ (𝐵 ∖ 𝐶) = (𝐵 ∩ (V ∖ 𝐶)) |
8 | 7 | difeq2i 3252 | . 2 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) |
9 | 5, 8 | sseqtrri 3192 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) ⊆ (𝐴 ∖ (𝐵 ∖ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: Vcvv 2739 ∖ cdif 3128 ∪ cun 3129 ∩ cin 3130 ⊆ wss 3131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |