ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unss2 Unicode version

Theorem unss2 3171
Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
unss2  |-  ( A 
C_  B  ->  ( C  u.  A )  C_  ( C  u.  B
) )

Proof of Theorem unss2
StepHypRef Expression
1 unss1 3169 . 2  |-  ( A 
C_  B  ->  ( A  u.  C )  C_  ( B  u.  C
) )
2 uncom 3144 . 2  |-  ( C  u.  A )  =  ( A  u.  C
)
3 uncom 3144 . 2  |-  ( C  u.  B )  =  ( B  u.  C
)
41, 2, 33sstr4g 3067 1  |-  ( A 
C_  B  ->  ( C  u.  A )  C_  ( C  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    u. cun 2997    C_ wss 2999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3003  df-in 3005  df-ss 3012
This theorem is referenced by:  unss12  3172  difdif2ss  3256  difdifdirss  3365  ord3ex  4023  rdgss  6140  xpiderm  6353
  Copyright terms: Public domain W3C validator