Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  unss2 Unicode version

Theorem unss2 3247
 Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
unss2

Proof of Theorem unss2
StepHypRef Expression
1 unss1 3245 . 2
2 uncom 3220 . 2
3 uncom 3220 . 2
41, 2, 33sstr4g 3140 1
 Colors of variables: wff set class Syntax hints:   wi 4   cun 3069   wss 3071 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084 This theorem is referenced by:  unss12  3248  difdif2ss  3333  difdifdirss  3447  ord3ex  4114  rdgss  6280  xpider  6500
 Copyright terms: Public domain W3C validator