ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unss2 Unicode version

Theorem unss2 3334
Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
unss2  |-  ( A 
C_  B  ->  ( C  u.  A )  C_  ( C  u.  B
) )

Proof of Theorem unss2
StepHypRef Expression
1 unss1 3332 . 2  |-  ( A 
C_  B  ->  ( A  u.  C )  C_  ( B  u.  C
) )
2 uncom 3307 . 2  |-  ( C  u.  A )  =  ( A  u.  C
)
3 uncom 3307 . 2  |-  ( C  u.  B )  =  ( B  u.  C
)
41, 2, 33sstr4g 3226 1  |-  ( A 
C_  B  ->  ( C  u.  A )  C_  ( C  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    u. cun 3155    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by:  unss12  3335  difdif2ss  3420  difdifdirss  3535  ord3ex  4223  rdgss  6441  xpider  6665
  Copyright terms: Public domain W3C validator