ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unss2 Unicode version

Theorem unss2 3278
Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
unss2  |-  ( A 
C_  B  ->  ( C  u.  A )  C_  ( C  u.  B
) )

Proof of Theorem unss2
StepHypRef Expression
1 unss1 3276 . 2  |-  ( A 
C_  B  ->  ( A  u.  C )  C_  ( B  u.  C
) )
2 uncom 3251 . 2  |-  ( C  u.  A )  =  ( A  u.  C
)
3 uncom 3251 . 2  |-  ( C  u.  B )  =  ( B  u.  C
)
41, 2, 33sstr4g 3171 1  |-  ( A 
C_  B  ->  ( C  u.  A )  C_  ( C  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    u. cun 3100    C_ wss 3102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115
This theorem is referenced by:  unss12  3279  difdif2ss  3364  difdifdirss  3478  ord3ex  4151  rdgss  6330  xpider  6551
  Copyright terms: Public domain W3C validator