ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topcld Unicode version

Theorem topcld 12749
Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
topcld  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )

Proof of Theorem topcld
StepHypRef Expression
1 difid 3477 . . . 4  |-  ( X 
\  X )  =  (/)
2 0opn 12644 . . . 4  |-  ( J  e.  Top  ->  (/)  e.  J
)
31, 2eqeltrid 2253 . . 3  |-  ( J  e.  Top  ->  ( X  \  X )  e.  J )
4 ssid 3162 . . 3  |-  X  C_  X
53, 4jctil 310 . 2  |-  ( J  e.  Top  ->  ( X  C_  X  /\  ( X  \  X )  e.  J ) )
6 iscld.1 . . 3  |-  X  = 
U. J
76iscld 12743 . 2  |-  ( J  e.  Top  ->  ( X  e.  ( Clsd `  J )  <->  ( X  C_  X  /\  ( X 
\  X )  e.  J ) ) )
85, 7mpbird 166 1  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    \ cdif 3113    C_ wss 3116   (/)c0 3409   U.cuni 3789   ` cfv 5188   Topctop 12635   Clsdccld 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-top 12636  df-cld 12735
This theorem is referenced by:  clsval  12751  clstop  12767  clsss3  12770
  Copyright terms: Public domain W3C validator