ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topcld Unicode version

Theorem topcld 12292
Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
topcld  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )

Proof of Theorem topcld
StepHypRef Expression
1 difid 3431 . . . 4  |-  ( X 
\  X )  =  (/)
2 0opn 12187 . . . 4  |-  ( J  e.  Top  ->  (/)  e.  J
)
31, 2eqeltrid 2226 . . 3  |-  ( J  e.  Top  ->  ( X  \  X )  e.  J )
4 ssid 3117 . . 3  |-  X  C_  X
53, 4jctil 310 . 2  |-  ( J  e.  Top  ->  ( X  C_  X  /\  ( X  \  X )  e.  J ) )
6 iscld.1 . . 3  |-  X  = 
U. J
76iscld 12286 . 2  |-  ( J  e.  Top  ->  ( X  e.  ( Clsd `  J )  <->  ( X  C_  X  /\  ( X 
\  X )  e.  J ) ) )
85, 7mpbird 166 1  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    \ cdif 3068    C_ wss 3071   (/)c0 3363   U.cuni 3736   ` cfv 5123   Topctop 12178   Clsdccld 12275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-top 12179  df-cld 12278
This theorem is referenced by:  clsval  12294  clstop  12310  clsss3  12313
  Copyright terms: Public domain W3C validator