ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topcld Unicode version

Theorem topcld 14783
Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
topcld  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )

Proof of Theorem topcld
StepHypRef Expression
1 difid 3560 . . . 4  |-  ( X 
\  X )  =  (/)
2 0opn 14680 . . . 4  |-  ( J  e.  Top  ->  (/)  e.  J
)
31, 2eqeltrid 2316 . . 3  |-  ( J  e.  Top  ->  ( X  \  X )  e.  J )
4 ssid 3244 . . 3  |-  X  C_  X
53, 4jctil 312 . 2  |-  ( J  e.  Top  ->  ( X  C_  X  /\  ( X  \  X )  e.  J ) )
6 iscld.1 . . 3  |-  X  = 
U. J
76iscld 14777 . 2  |-  ( J  e.  Top  ->  ( X  e.  ( Clsd `  J )  <->  ( X  C_  X  /\  ( X 
\  X )  e.  J ) ) )
85, 7mpbird 167 1  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    \ cdif 3194    C_ wss 3197   (/)c0 3491   U.cuni 3888   ` cfv 5318   Topctop 14671   Clsdccld 14766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-top 14672  df-cld 14769
This theorem is referenced by:  clsval  14785  clstop  14801  clsss3  14804
  Copyright terms: Public domain W3C validator