Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difid | GIF version |
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3173 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | ssdif0im 3485 | . 2 ⊢ (𝐴 ⊆ 𝐴 → (𝐴 ∖ 𝐴) = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∖ cdif 3124 ⊆ wss 3127 ∅c0 3420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-in 3133 df-ss 3140 df-nul 3421 |
This theorem is referenced by: dif0 3491 difun2 3500 diftpsn3 3730 2oconcl 6430 ismkvnex 7143 topcld 13180 |
Copyright terms: Public domain | W3C validator |