ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difid GIF version

Theorem difid 3477
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
difid (𝐴𝐴) = ∅

Proof of Theorem difid
StepHypRef Expression
1 ssid 3162 . 2 𝐴𝐴
2 ssdif0im 3473 . 2 (𝐴𝐴 → (𝐴𝐴) = ∅)
31, 2ax-mp 5 1 (𝐴𝐴) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1343  cdif 3113  wss 3116  c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by:  dif0  3479  difun2  3488  diftpsn3  3714  2oconcl  6407  ismkvnex  7119  topcld  12749
  Copyright terms: Public domain W3C validator