![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snssi | Unicode version |
Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
snssi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 3738 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ibi 176 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-in 3147 df-ss 3154 df-sn 3610 |
This theorem is referenced by: difsnss 3750 sssnm 3766 tpssi 3771 snelpwi 4224 intid 4236 abnexg 4458 ordsucss 4515 xpsspw 4750 djussxp 4784 xpimasn 5089 fconst6g 5426 f1sng 5515 fvimacnvi 5643 fsn2 5703 fnressn 5715 fsnunf 5729 mapsn 6704 unsnfidcel 6934 en1eqsn 6961 exmidfodomrlemim 7214 axresscn 7873 nn0ssre 9194 1fv 10153 fxnn0nninf 10452 1exp 10563 hashdifsn 10813 hashdifpr 10814 fsum00 11484 hash2iun1dif1 11502 exmidunben 12441 lspsncl 13638 lspsnss 13650 lspsnid 13653 znlidl 13849 isneip 13999 neipsm 14007 opnneip 14012 |
Copyright terms: Public domain | W3C validator |