| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssi | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| snssi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg 3767 |
. 2
| |
| 2 | 1 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-sn 3639 |
| This theorem is referenced by: difsnss 3779 sssnm 3795 tpssi 3800 snelpwi 4257 intid 4269 abnexg 4494 ordsucss 4553 xpsspw 4788 djussxp 4824 xpimasn 5132 fconst6g 5476 f1sng 5566 fvimacnvi 5696 fsn2 5756 fnressn 5772 fsnunf 5786 mapsn 6779 unsnfidcel 7020 en1eqsn 7052 exmidfodomrlemim 7311 axresscn 7975 nn0ssre 9301 1fv 10263 fxnn0nninf 10586 1exp 10715 hashdifsn 10966 hashdifpr 10967 fsum00 11806 hash2iun1dif1 11824 4sqlem19 12765 exmidunben 12830 lspsncl 14187 lspsnss 14199 lspsnid 14202 znlidl 14429 isneip 14651 neipsm 14659 opnneip 14664 plyun0 15241 plycjlemc 15265 plycj 15266 plyrecj 15268 dvply2g 15271 perfectlem2 15505 |
| Copyright terms: Public domain | W3C validator |