![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snssi | Unicode version |
Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
snssi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 3573 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ibi 174 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-in 3005 df-ss 3012 df-sn 3452 |
This theorem is referenced by: difsnss 3583 sssnm 3598 tpssi 3603 snelpwi 4039 intid 4051 ordsucss 4321 xpsspw 4550 djussxp 4581 xpimasn 4879 fconst6g 5209 fvimacnvi 5413 fsn2 5471 fnressn 5483 fsnunf 5497 mapsn 6447 unsnfidcel 6631 en1eqsn 6657 exmidfodomrlemim 6827 axresscn 7397 nn0ssre 8677 1fv 9550 fxnn0nninf 9844 1exp 9984 hashdifsn 10227 hashdifpr 10228 fsum00 10856 hash2iun1dif1 10874 |
Copyright terms: Public domain | W3C validator |