![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snssi | Unicode version |
Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
snssi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 3753 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ibi 176 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 df-sn 3625 |
This theorem is referenced by: difsnss 3765 sssnm 3781 tpssi 3786 snelpwi 4242 intid 4254 abnexg 4478 ordsucss 4537 xpsspw 4772 djussxp 4808 xpimasn 5115 fconst6g 5453 f1sng 5543 fvimacnvi 5673 fsn2 5733 fnressn 5745 fsnunf 5759 mapsn 6746 unsnfidcel 6979 en1eqsn 7009 exmidfodomrlemim 7263 axresscn 7922 nn0ssre 9247 1fv 10208 fxnn0nninf 10513 1exp 10642 hashdifsn 10893 hashdifpr 10894 fsum00 11608 hash2iun1dif1 11626 4sqlem19 12550 exmidunben 12586 lspsncl 13891 lspsnss 13903 lspsnid 13906 znlidl 14133 isneip 14325 neipsm 14333 opnneip 14338 plyun0 14915 plycjlemc 14938 plycj 14939 plyrecj 14941 |
Copyright terms: Public domain | W3C validator |