| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssi | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| snssi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg 3757 |
. 2
| |
| 2 | 1 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3629 |
| This theorem is referenced by: difsnss 3769 sssnm 3785 tpssi 3790 snelpwi 4246 intid 4258 abnexg 4482 ordsucss 4541 xpsspw 4776 djussxp 4812 xpimasn 5119 fconst6g 5457 f1sng 5547 fvimacnvi 5677 fsn2 5737 fnressn 5749 fsnunf 5763 mapsn 6750 unsnfidcel 6983 en1eqsn 7015 exmidfodomrlemim 7270 axresscn 7929 nn0ssre 9255 1fv 10216 fxnn0nninf 10533 1exp 10662 hashdifsn 10913 hashdifpr 10914 fsum00 11629 hash2iun1dif1 11647 4sqlem19 12588 exmidunben 12653 lspsncl 13958 lspsnss 13970 lspsnid 13973 znlidl 14200 isneip 14392 neipsm 14400 opnneip 14405 plyun0 14982 plycjlemc 15006 plycj 15007 plyrecj 15009 dvply2g 15012 perfectlem2 15246 |
| Copyright terms: Public domain | W3C validator |