| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssi | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| snssi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg 3802 |
. 2
| |
| 2 | 1 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-sn 3672 |
| This theorem is referenced by: difsnss 3814 sssnm 3832 tpssi 3837 snelpwi 4297 intid 4310 abnexg 4537 ordsucss 4596 xpsspw 4831 djussxp 4867 xpimasn 5177 fconst6g 5524 f1sng 5615 fvimacnvi 5749 fsn2 5809 fnressn 5825 fsnunf 5839 mapsn 6837 unsnfidcel 7083 en1eqsn 7115 exmidfodomrlemim 7379 axresscn 8047 nn0ssre 9373 1fv 10335 fxnn0nninf 10661 1exp 10790 hashdifsn 11041 hashdifpr 11042 fsum00 11973 hash2iun1dif1 11991 4sqlem19 12932 exmidunben 12997 lspsncl 14356 lspsnss 14368 lspsnid 14371 znlidl 14598 isneip 14820 neipsm 14828 opnneip 14833 plyun0 15410 plycjlemc 15434 plycj 15435 plyrecj 15437 dvply2g 15440 perfectlem2 15674 |
| Copyright terms: Public domain | W3C validator |