ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcdifsnid Unicode version

Theorem dcdifsnid 6483
Description: If we remove a single element from a set with decidable equality then put it back in, we end up with the original set. This strengthens difsnss 3726 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 17-Jun-2022.)
Assertion
Ref Expression
dcdifsnid  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  (
( A  \  { B } )  u.  { B } )  =  A )
Distinct variable groups:    x, A, y   
x, B, y

Proof of Theorem dcdifsnid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 difsnss 3726 . . 3  |-  ( B  e.  A  ->  (
( A  \  { B } )  u.  { B } )  C_  A
)
21adantl 275 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  (
( A  \  { B } )  u.  { B } )  C_  A
)
3 simpr 109 . . . . . . 7  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  z  =  B )  ->  z  =  B )
4 velsn 3600 . . . . . . 7  |-  ( z  e.  { B }  <->  z  =  B )
53, 4sylibr 133 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  z  =  B )  ->  z  e.  { B } )
6 elun2 3295 . . . . . 6  |-  ( z  e.  { B }  ->  z  e.  ( ( A  \  { B } )  u.  { B } ) )
75, 6syl 14 . . . . 5  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  z  =  B )  ->  z  e.  ( ( A  \  { B } )  u. 
{ B } ) )
8 simplr 525 . . . . . . 7  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  -.  z  =  B )  ->  z  e.  A )
9 simpr 109 . . . . . . . 8  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  -.  z  =  B )  ->  -.  z  =  B )
109, 4sylnibr 672 . . . . . . 7  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  -.  z  =  B )  ->  -.  z  e.  { B } )
118, 10eldifd 3131 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  -.  z  =  B )  ->  z  e.  ( A 
\  { B }
) )
12 elun1 3294 . . . . . 6  |-  ( z  e.  ( A  \  { B } )  -> 
z  e.  ( ( A  \  { B } )  u.  { B } ) )
1311, 12syl 14 . . . . 5  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  -.  z  =  B )  ->  z  e.  ( ( A  \  { B } )  u.  { B } ) )
14 simpll 524 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  /\  z  e.  A
)  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
15 simpr 109 . . . . . . . 8  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  /\  z  e.  A
)  ->  z  e.  A )
16 simplr 525 . . . . . . . 8  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  /\  z  e.  A
)  ->  B  e.  A )
17 equequ1 1705 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
1817dcbid 833 . . . . . . . . 9  |-  ( x  =  z  ->  (DECID  x  =  y  <-> DECID  z  =  y )
)
19 eqeq2 2180 . . . . . . . . . 10  |-  ( y  =  B  ->  (
z  =  y  <->  z  =  B ) )
2019dcbid 833 . . . . . . . . 9  |-  ( y  =  B  ->  (DECID  z  =  y  <-> DECID  z  =  B )
)
2118, 20rspc2v 2847 . . . . . . . 8  |-  ( ( z  e.  A  /\  B  e.  A )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID  z  =  B ) )
2215, 16, 21syl2anc 409 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  /\  z  e.  A
)  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID 
z  =  B ) )
2314, 22mpd 13 . . . . . 6  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  /\  z  e.  A
)  -> DECID  z  =  B
)
24 exmiddc 831 . . . . . 6  |-  (DECID  z  =  B  ->  ( z  =  B  \/  -.  z  =  B )
)
2523, 24syl 14 . . . . 5  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  /\  z  e.  A
)  ->  ( z  =  B  \/  -.  z  =  B )
)
267, 13, 25mpjaodan 793 . . . 4  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  /\  z  e.  A
)  ->  z  e.  ( ( A  \  { B } )  u. 
{ B } ) )
2726ex 114 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  (
z  e.  A  -> 
z  e.  ( ( A  \  { B } )  u.  { B } ) ) )
2827ssrdv 3153 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  A  C_  ( ( A  \  { B } )  u. 
{ B } ) )
292, 28eqssd 3164 1  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  (
( A  \  { B } )  u.  { B } )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141   A.wral 2448    \ cdif 3118    u. cun 3119    C_ wss 3121   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589
This theorem is referenced by:  fnsnsplitdc  6484  nndifsnid  6486  fidifsnid  6849  undifdc  6901
  Copyright terms: Public domain W3C validator