| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcdifsnid | Unicode version | ||
| Description: If we remove a single element from a set with decidable equality then put it back in, we end up with the original set. This strengthens difsnss 3814 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 17-Jun-2022.) |
| Ref | Expression |
|---|---|
| dcdifsnid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difsnss 3814 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | simpr 110 |
. . . . . . 7
| |
| 4 | velsn 3683 |
. . . . . . 7
| |
| 5 | 3, 4 | sylibr 134 |
. . . . . 6
|
| 6 | elun2 3372 |
. . . . . 6
| |
| 7 | 5, 6 | syl 14 |
. . . . 5
|
| 8 | simplr 528 |
. . . . . . 7
| |
| 9 | simpr 110 |
. . . . . . . 8
| |
| 10 | 9, 4 | sylnibr 681 |
. . . . . . 7
|
| 11 | 8, 10 | eldifd 3207 |
. . . . . 6
|
| 12 | elun1 3371 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | simpll 527 |
. . . . . . 7
| |
| 15 | simpr 110 |
. . . . . . . 8
| |
| 16 | simplr 528 |
. . . . . . . 8
| |
| 17 | equequ1 1758 |
. . . . . . . . . 10
| |
| 18 | 17 | dcbid 843 |
. . . . . . . . 9
|
| 19 | eqeq2 2239 |
. . . . . . . . . 10
| |
| 20 | 19 | dcbid 843 |
. . . . . . . . 9
|
| 21 | 18, 20 | rspc2v 2920 |
. . . . . . . 8
|
| 22 | 15, 16, 21 | syl2anc 411 |
. . . . . . 7
|
| 23 | 14, 22 | mpd 13 |
. . . . . 6
|
| 24 | exmiddc 841 |
. . . . . 6
| |
| 25 | 23, 24 | syl 14 |
. . . . 5
|
| 26 | 7, 13, 25 | mpjaodan 803 |
. . . 4
|
| 27 | 26 | ex 115 |
. . 3
|
| 28 | 27 | ssrdv 3230 |
. 2
|
| 29 | 2, 28 | eqssd 3241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 |
| This theorem is referenced by: fnsnsplitdc 6651 nndifsnid 6653 fidifsnid 7033 undifdc 7086 |
| Copyright terms: Public domain | W3C validator |