| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcdifsnid | Unicode version | ||
| Description: If we remove a single element from a set with decidable equality then put it back in, we end up with the original set. This strengthens difsnss 3779 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 17-Jun-2022.) |
| Ref | Expression |
|---|---|
| dcdifsnid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difsnss 3779 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | simpr 110 |
. . . . . . 7
| |
| 4 | velsn 3650 |
. . . . . . 7
| |
| 5 | 3, 4 | sylibr 134 |
. . . . . 6
|
| 6 | elun2 3341 |
. . . . . 6
| |
| 7 | 5, 6 | syl 14 |
. . . . 5
|
| 8 | simplr 528 |
. . . . . . 7
| |
| 9 | simpr 110 |
. . . . . . . 8
| |
| 10 | 9, 4 | sylnibr 679 |
. . . . . . 7
|
| 11 | 8, 10 | eldifd 3176 |
. . . . . 6
|
| 12 | elun1 3340 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | simpll 527 |
. . . . . . 7
| |
| 15 | simpr 110 |
. . . . . . . 8
| |
| 16 | simplr 528 |
. . . . . . . 8
| |
| 17 | equequ1 1735 |
. . . . . . . . . 10
| |
| 18 | 17 | dcbid 840 |
. . . . . . . . 9
|
| 19 | eqeq2 2215 |
. . . . . . . . . 10
| |
| 20 | 19 | dcbid 840 |
. . . . . . . . 9
|
| 21 | 18, 20 | rspc2v 2890 |
. . . . . . . 8
|
| 22 | 15, 16, 21 | syl2anc 411 |
. . . . . . 7
|
| 23 | 14, 22 | mpd 13 |
. . . . . 6
|
| 24 | exmiddc 838 |
. . . . . 6
| |
| 25 | 23, 24 | syl 14 |
. . . . 5
|
| 26 | 7, 13, 25 | mpjaodan 800 |
. . . 4
|
| 27 | 26 | ex 115 |
. . 3
|
| 28 | 27 | ssrdv 3199 |
. 2
|
| 29 | 2, 28 | eqssd 3210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 |
| This theorem is referenced by: fnsnsplitdc 6591 nndifsnid 6593 fidifsnid 6968 undifdc 7021 |
| Copyright terms: Public domain | W3C validator |