Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcdifsnid | Unicode version |
Description: If we remove a single element from a set with decidable equality then put it back in, we end up with the original set. This strengthens difsnss 3719 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 17-Jun-2022.) |
Ref | Expression |
---|---|
dcdifsnid | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsnss 3719 | . . 3 | |
2 | 1 | adantl 275 | . 2 DECID |
3 | simpr 109 | . . . . . . 7 DECID | |
4 | velsn 3593 | . . . . . . 7 | |
5 | 3, 4 | sylibr 133 | . . . . . 6 DECID |
6 | elun2 3290 | . . . . . 6 | |
7 | 5, 6 | syl 14 | . . . . 5 DECID |
8 | simplr 520 | . . . . . . 7 DECID | |
9 | simpr 109 | . . . . . . . 8 DECID | |
10 | 9, 4 | sylnibr 667 | . . . . . . 7 DECID |
11 | 8, 10 | eldifd 3126 | . . . . . 6 DECID |
12 | elun1 3289 | . . . . . 6 | |
13 | 11, 12 | syl 14 | . . . . 5 DECID |
14 | simpll 519 | . . . . . . 7 DECID DECID | |
15 | simpr 109 | . . . . . . . 8 DECID | |
16 | simplr 520 | . . . . . . . 8 DECID | |
17 | equequ1 1700 | . . . . . . . . . 10 | |
18 | 17 | dcbid 828 | . . . . . . . . 9 DECID DECID |
19 | eqeq2 2175 | . . . . . . . . . 10 | |
20 | 19 | dcbid 828 | . . . . . . . . 9 DECID DECID |
21 | 18, 20 | rspc2v 2843 | . . . . . . . 8 DECID DECID |
22 | 15, 16, 21 | syl2anc 409 | . . . . . . 7 DECID DECID DECID |
23 | 14, 22 | mpd 13 | . . . . . 6 DECID DECID |
24 | exmiddc 826 | . . . . . 6 DECID | |
25 | 23, 24 | syl 14 | . . . . 5 DECID |
26 | 7, 13, 25 | mpjaodan 788 | . . . 4 DECID |
27 | 26 | ex 114 | . . 3 DECID |
28 | 27 | ssrdv 3148 | . 2 DECID |
29 | 2, 28 | eqssd 3159 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 wceq 1343 wcel 2136 wral 2444 cdif 3113 cun 3114 wss 3116 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 |
This theorem is referenced by: fnsnsplitdc 6473 nndifsnid 6475 fidifsnid 6837 undifdc 6889 |
Copyright terms: Public domain | W3C validator |