| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dcdifsnid | Unicode version | ||
| Description: If we remove a single element from a set with decidable equality then put it back in, we end up with the original set. This strengthens difsnss 3768 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 17-Jun-2022.) | 
| Ref | Expression | 
|---|---|
| dcdifsnid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | difsnss 3768 | 
. . 3
 | |
| 2 | 1 | adantl 277 | 
. 2
 | 
| 3 | simpr 110 | 
. . . . . . 7
 | |
| 4 | velsn 3639 | 
. . . . . . 7
 | |
| 5 | 3, 4 | sylibr 134 | 
. . . . . 6
 | 
| 6 | elun2 3331 | 
. . . . . 6
 | |
| 7 | 5, 6 | syl 14 | 
. . . . 5
 | 
| 8 | simplr 528 | 
. . . . . . 7
 | |
| 9 | simpr 110 | 
. . . . . . . 8
 | |
| 10 | 9, 4 | sylnibr 678 | 
. . . . . . 7
 | 
| 11 | 8, 10 | eldifd 3167 | 
. . . . . 6
 | 
| 12 | elun1 3330 | 
. . . . . 6
 | |
| 13 | 11, 12 | syl 14 | 
. . . . 5
 | 
| 14 | simpll 527 | 
. . . . . . 7
 | |
| 15 | simpr 110 | 
. . . . . . . 8
 | |
| 16 | simplr 528 | 
. . . . . . . 8
 | |
| 17 | equequ1 1726 | 
. . . . . . . . . 10
 | |
| 18 | 17 | dcbid 839 | 
. . . . . . . . 9
 | 
| 19 | eqeq2 2206 | 
. . . . . . . . . 10
 | |
| 20 | 19 | dcbid 839 | 
. . . . . . . . 9
 | 
| 21 | 18, 20 | rspc2v 2881 | 
. . . . . . . 8
 | 
| 22 | 15, 16, 21 | syl2anc 411 | 
. . . . . . 7
 | 
| 23 | 14, 22 | mpd 13 | 
. . . . . 6
 | 
| 24 | exmiddc 837 | 
. . . . . 6
 | |
| 25 | 23, 24 | syl 14 | 
. . . . 5
 | 
| 26 | 7, 13, 25 | mpjaodan 799 | 
. . . 4
 | 
| 27 | 26 | ex 115 | 
. . 3
 | 
| 28 | 27 | ssrdv 3189 | 
. 2
 | 
| 29 | 2, 28 | eqssd 3200 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 | 
| This theorem is referenced by: fnsnsplitdc 6563 nndifsnid 6565 fidifsnid 6932 undifdc 6985 | 
| Copyright terms: Public domain | W3C validator |