| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcdifsnid | Unicode version | ||
| Description: If we remove a single element from a set with decidable equality then put it back in, we end up with the original set. This strengthens difsnss 3790 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 17-Jun-2022.) |
| Ref | Expression |
|---|---|
| dcdifsnid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difsnss 3790 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | simpr 110 |
. . . . . . 7
| |
| 4 | velsn 3660 |
. . . . . . 7
| |
| 5 | 3, 4 | sylibr 134 |
. . . . . 6
|
| 6 | elun2 3349 |
. . . . . 6
| |
| 7 | 5, 6 | syl 14 |
. . . . 5
|
| 8 | simplr 528 |
. . . . . . 7
| |
| 9 | simpr 110 |
. . . . . . . 8
| |
| 10 | 9, 4 | sylnibr 679 |
. . . . . . 7
|
| 11 | 8, 10 | eldifd 3184 |
. . . . . 6
|
| 12 | elun1 3348 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | simpll 527 |
. . . . . . 7
| |
| 15 | simpr 110 |
. . . . . . . 8
| |
| 16 | simplr 528 |
. . . . . . . 8
| |
| 17 | equequ1 1736 |
. . . . . . . . . 10
| |
| 18 | 17 | dcbid 840 |
. . . . . . . . 9
|
| 19 | eqeq2 2217 |
. . . . . . . . . 10
| |
| 20 | 19 | dcbid 840 |
. . . . . . . . 9
|
| 21 | 18, 20 | rspc2v 2897 |
. . . . . . . 8
|
| 22 | 15, 16, 21 | syl2anc 411 |
. . . . . . 7
|
| 23 | 14, 22 | mpd 13 |
. . . . . 6
|
| 24 | exmiddc 838 |
. . . . . 6
| |
| 25 | 23, 24 | syl 14 |
. . . . 5
|
| 26 | 7, 13, 25 | mpjaodan 800 |
. . . 4
|
| 27 | 26 | ex 115 |
. . 3
|
| 28 | 27 | ssrdv 3207 |
. 2
|
| 29 | 2, 28 | eqssd 3218 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 |
| This theorem is referenced by: fnsnsplitdc 6614 nndifsnid 6616 fidifsnid 6994 undifdc 7047 |
| Copyright terms: Public domain | W3C validator |