ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcdifsnid Unicode version

Theorem dcdifsnid 6508
Description: If we remove a single element from a set with decidable equality then put it back in, we end up with the original set. This strengthens difsnss 3740 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 17-Jun-2022.)
Assertion
Ref Expression
dcdifsnid  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  (
( A  \  { B } )  u.  { B } )  =  A )
Distinct variable groups:    x, A, y   
x, B, y

Proof of Theorem dcdifsnid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 difsnss 3740 . . 3  |-  ( B  e.  A  ->  (
( A  \  { B } )  u.  { B } )  C_  A
)
21adantl 277 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  (
( A  \  { B } )  u.  { B } )  C_  A
)
3 simpr 110 . . . . . . 7  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  z  =  B )  ->  z  =  B )
4 velsn 3611 . . . . . . 7  |-  ( z  e.  { B }  <->  z  =  B )
53, 4sylibr 134 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  z  =  B )  ->  z  e.  { B } )
6 elun2 3305 . . . . . 6  |-  ( z  e.  { B }  ->  z  e.  ( ( A  \  { B } )  u.  { B } ) )
75, 6syl 14 . . . . 5  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  z  =  B )  ->  z  e.  ( ( A  \  { B } )  u. 
{ B } ) )
8 simplr 528 . . . . . . 7  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  -.  z  =  B )  ->  z  e.  A )
9 simpr 110 . . . . . . . 8  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  -.  z  =  B )  ->  -.  z  =  B )
109, 4sylnibr 677 . . . . . . 7  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  -.  z  =  B )  ->  -.  z  e.  { B } )
118, 10eldifd 3141 . . . . . 6  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  -.  z  =  B )  ->  z  e.  ( A 
\  { B }
) )
12 elun1 3304 . . . . . 6  |-  ( z  e.  ( A  \  { B } )  -> 
z  e.  ( ( A  \  { B } )  u.  { B } ) )
1311, 12syl 14 . . . . 5  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A
)  /\  z  e.  A )  /\  -.  z  =  B )  ->  z  e.  ( ( A  \  { B } )  u.  { B } ) )
14 simpll 527 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  /\  z  e.  A
)  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
15 simpr 110 . . . . . . . 8  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  /\  z  e.  A
)  ->  z  e.  A )
16 simplr 528 . . . . . . . 8  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  /\  z  e.  A
)  ->  B  e.  A )
17 equequ1 1712 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
1817dcbid 838 . . . . . . . . 9  |-  ( x  =  z  ->  (DECID  x  =  y  <-> DECID  z  =  y )
)
19 eqeq2 2187 . . . . . . . . . 10  |-  ( y  =  B  ->  (
z  =  y  <->  z  =  B ) )
2019dcbid 838 . . . . . . . . 9  |-  ( y  =  B  ->  (DECID  z  =  y  <-> DECID  z  =  B )
)
2118, 20rspc2v 2856 . . . . . . . 8  |-  ( ( z  e.  A  /\  B  e.  A )  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID  z  =  B ) )
2215, 16, 21syl2anc 411 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  /\  z  e.  A
)  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  -> DECID 
z  =  B ) )
2314, 22mpd 13 . . . . . 6  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  /\  z  e.  A
)  -> DECID  z  =  B
)
24 exmiddc 836 . . . . . 6  |-  (DECID  z  =  B  ->  ( z  =  B  \/  -.  z  =  B )
)
2523, 24syl 14 . . . . 5  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  /\  z  e.  A
)  ->  ( z  =  B  \/  -.  z  =  B )
)
267, 13, 25mpjaodan 798 . . . 4  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  /\  z  e.  A
)  ->  z  e.  ( ( A  \  { B } )  u. 
{ B } ) )
2726ex 115 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  (
z  e.  A  -> 
z  e.  ( ( A  \  { B } )  u.  { B } ) ) )
2827ssrdv 3163 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  A  C_  ( ( A  \  { B } )  u. 
{ B } ) )
292, 28eqssd 3174 1  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  (
( A  \  { B } )  u.  { B } )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455    \ cdif 3128    u. cun 3129    C_ wss 3131   {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600
This theorem is referenced by:  fnsnsplitdc  6509  nndifsnid  6511  fidifsnid  6874  undifdc  6926
  Copyright terms: Public domain W3C validator