ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsnsplitss Unicode version

Theorem fnsnsplitss 5806
Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 20-Jan-2023.)
Assertion
Ref Expression
fnsnsplitss  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  C_  F
)

Proof of Theorem fnsnsplitss
StepHypRef Expression
1 difsnss 3790 . . . 4  |-  ( X  e.  A  ->  (
( A  \  { X } )  u.  { X } )  C_  A
)
21adantl 277 . . 3  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( A  \  { X } )  u. 
{ X } ) 
C_  A )
3 ssres2 5005 . . 3  |-  ( ( ( A  \  { X } )  u.  { X } )  C_  A  ->  ( F  |`  (
( A  \  { X } )  u.  { X } ) )  C_  ( F  |`  A ) )
42, 3syl 14 . 2  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  (
( A  \  { X } )  u.  { X } ) )  C_  ( F  |`  A ) )
5 resundi 4991 . . 3  |-  ( F  |`  ( ( A  \  { X } )  u. 
{ X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u.  ( F  |`  { X } ) )
6 fnressn 5793 . . . 4  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  { X } )  =  { <. X ,  ( F `
 X ) >. } )
76uneq2d 3335 . . 3  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F  |`  ( A  \  { X } ) )  u.  ( F  |`  { X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
85, 7eqtrid 2252 . 2  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  (
( A  \  { X } )  u.  { X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
9 fnresdm 5404 . . 3  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
109adantr 276 . 2  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  A )  =  F )
114, 8, 103sstr3d 3245 1  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  C_  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    \ cdif 3171    u. cun 3172    C_ wss 3174   {csn 3643   <.cop 3646    |` cres 4695    Fn wfn 5285   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298
This theorem is referenced by:  funresdfunsnss  5810
  Copyright terms: Public domain W3C validator