ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsnsplitss Unicode version

Theorem fnsnsplitss 5619
Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 20-Jan-2023.)
Assertion
Ref Expression
fnsnsplitss  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  C_  F
)

Proof of Theorem fnsnsplitss
StepHypRef Expression
1 difsnss 3666 . . . 4  |-  ( X  e.  A  ->  (
( A  \  { X } )  u.  { X } )  C_  A
)
21adantl 275 . . 3  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( A  \  { X } )  u. 
{ X } ) 
C_  A )
3 ssres2 4846 . . 3  |-  ( ( ( A  \  { X } )  u.  { X } )  C_  A  ->  ( F  |`  (
( A  \  { X } )  u.  { X } ) )  C_  ( F  |`  A ) )
42, 3syl 14 . 2  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  (
( A  \  { X } )  u.  { X } ) )  C_  ( F  |`  A ) )
5 resundi 4832 . . 3  |-  ( F  |`  ( ( A  \  { X } )  u. 
{ X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u.  ( F  |`  { X } ) )
6 fnressn 5606 . . . 4  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  { X } )  =  { <. X ,  ( F `
 X ) >. } )
76uneq2d 3230 . . 3  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F  |`  ( A  \  { X } ) )  u.  ( F  |`  { X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
85, 7syl5eq 2184 . 2  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  (
( A  \  { X } )  u.  { X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
9 fnresdm 5232 . . 3  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
109adantr 274 . 2  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  A )  =  F )
114, 8, 103sstr3d 3141 1  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  C_  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    \ cdif 3068    u. cun 3069    C_ wss 3071   {csn 3527   <.cop 3530    |` cres 4541    Fn wfn 5118   ` cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131
This theorem is referenced by:  funresdfunsnss  5623
  Copyright terms: Public domain W3C validator