ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsnsplitss Unicode version

Theorem fnsnsplitss 5764
Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 20-Jan-2023.)
Assertion
Ref Expression
fnsnsplitss  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  C_  F
)

Proof of Theorem fnsnsplitss
StepHypRef Expression
1 difsnss 3769 . . . 4  |-  ( X  e.  A  ->  (
( A  \  { X } )  u.  { X } )  C_  A
)
21adantl 277 . . 3  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( A  \  { X } )  u. 
{ X } ) 
C_  A )
3 ssres2 4974 . . 3  |-  ( ( ( A  \  { X } )  u.  { X } )  C_  A  ->  ( F  |`  (
( A  \  { X } )  u.  { X } ) )  C_  ( F  |`  A ) )
42, 3syl 14 . 2  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  (
( A  \  { X } )  u.  { X } ) )  C_  ( F  |`  A ) )
5 resundi 4960 . . 3  |-  ( F  |`  ( ( A  \  { X } )  u. 
{ X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u.  ( F  |`  { X } ) )
6 fnressn 5751 . . . 4  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  { X } )  =  { <. X ,  ( F `
 X ) >. } )
76uneq2d 3318 . . 3  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F  |`  ( A  \  { X } ) )  u.  ( F  |`  { X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
85, 7eqtrid 2241 . 2  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  (
( A  \  { X } )  u.  { X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
9 fnresdm 5370 . . 3  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
109adantr 276 . 2  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  A )  =  F )
114, 8, 103sstr3d 3228 1  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  C_  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    \ cdif 3154    u. cun 3155    C_ wss 3157   {csn 3623   <.cop 3626    |` cres 4666    Fn wfn 5254   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267
This theorem is referenced by:  funresdfunsnss  5768
  Copyright terms: Public domain W3C validator