ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsnsplitss Unicode version

Theorem fnsnsplitss 5757
Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 20-Jan-2023.)
Assertion
Ref Expression
fnsnsplitss  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  C_  F
)

Proof of Theorem fnsnsplitss
StepHypRef Expression
1 difsnss 3764 . . . 4  |-  ( X  e.  A  ->  (
( A  \  { X } )  u.  { X } )  C_  A
)
21adantl 277 . . 3  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( A  \  { X } )  u. 
{ X } ) 
C_  A )
3 ssres2 4969 . . 3  |-  ( ( ( A  \  { X } )  u.  { X } )  C_  A  ->  ( F  |`  (
( A  \  { X } )  u.  { X } ) )  C_  ( F  |`  A ) )
42, 3syl 14 . 2  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  (
( A  \  { X } )  u.  { X } ) )  C_  ( F  |`  A ) )
5 resundi 4955 . . 3  |-  ( F  |`  ( ( A  \  { X } )  u. 
{ X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u.  ( F  |`  { X } ) )
6 fnressn 5744 . . . 4  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  { X } )  =  { <. X ,  ( F `
 X ) >. } )
76uneq2d 3313 . . 3  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F  |`  ( A  \  { X } ) )  u.  ( F  |`  { X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
85, 7eqtrid 2238 . 2  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  (
( A  \  { X } )  u.  { X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
9 fnresdm 5363 . . 3  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
109adantr 276 . 2  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  A )  =  F )
114, 8, 103sstr3d 3223 1  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  C_  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    \ cdif 3150    u. cun 3151    C_ wss 3153   {csn 3618   <.cop 3621    |` cres 4661    Fn wfn 5249   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262
This theorem is referenced by:  funresdfunsnss  5761
  Copyright terms: Public domain W3C validator