| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > snssd | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| snssd.1 | 
 | 
| Ref | Expression | 
|---|---|
| snssd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snssd.1 | 
. 2
 | |
| 2 | snssg 3756 | 
. . 3
 | |
| 3 | 1, 2 | syl 14 | 
. 2
 | 
| 4 | 1, 3 | mpbid 147 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3628 | 
| This theorem is referenced by: pwntru 4232 ecinxp 6669 xpdom3m 6893 ac6sfi 6959 undifdc 6985 iunfidisj 7012 fidcenumlemr 7021 ssfii 7040 en2other2 7263 un0addcl 9282 un0mulcl 9283 fseq1p1m1 10169 fsumge1 11626 fprodsplit1f 11799 phicl2 12382 ennnfonelemhf1o 12630 imasaddfnlemg 12957 imasaddflemg 12959 0subm 13116 gsumvallem2 13125 trivsubgd 13330 trivsubgsnd 13331 trivnsgd 13347 kerf1ghm 13404 lsssn0 13926 lss0ss 13927 lsptpcl 13950 lspsnvsi 13974 lspun0 13981 mulgrhm2 14166 zndvds 14205 rest0 14415 iscnp4 14454 cnconst2 14469 cnpdis 14478 txdis 14513 txdis1cn 14514 fsumcncntop 14803 dvef 14963 plyf 14973 elplyr 14976 elplyd 14977 ply1term 14979 plyaddlem 14985 plymullem 14986 plycolemc 14994 plycn 14998 dvply2g 15002 perfectlem2 15236 bj-omtrans 15602 pwtrufal 15642 | 
| Copyright terms: Public domain | W3C validator |