| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssd | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| snssd.1 |
|
| Ref | Expression |
|---|---|
| snssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssd.1 |
. 2
| |
| 2 | snssg 3767 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-sn 3639 |
| This theorem is referenced by: pwntru 4244 ecinxp 6699 xpdom3m 6931 ac6sfi 6997 undifdc 7023 iunfidisj 7050 fidcenumlemr 7059 ssfii 7078 en2other2 7306 un0addcl 9330 un0mulcl 9331 fseq1p1m1 10218 fsumge1 11805 fprodsplit1f 11978 bitsinv1 12306 phicl2 12569 ennnfonelemhf1o 12817 imasaddfnlemg 13179 imasaddflemg 13181 0subm 13349 gsumvallem2 13358 trivsubgd 13569 trivsubgsnd 13570 trivnsgd 13586 kerf1ghm 13643 lsssn0 14165 lss0ss 14166 lsptpcl 14189 lspsnvsi 14213 lspun0 14220 mulgrhm2 14405 zndvds 14444 rest0 14684 iscnp4 14723 cnconst2 14738 cnpdis 14747 txdis 14782 txdis1cn 14783 fsumcncntop 15072 dvef 15232 plyf 15242 elplyr 15245 elplyd 15246 ply1term 15248 plyaddlem 15254 plymullem 15255 plycolemc 15263 plycn 15267 dvply2g 15271 perfectlem2 15505 bj-omtrans 15929 pwtrufal 15971 |
| Copyright terms: Public domain | W3C validator |