![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snssd | Unicode version |
Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
snssd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
snssd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | snssg 3753 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbid 147 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 df-sn 3625 |
This theorem is referenced by: pwntru 4229 ecinxp 6666 xpdom3m 6890 ac6sfi 6956 undifdc 6982 iunfidisj 7007 fidcenumlemr 7016 ssfii 7035 en2other2 7258 un0addcl 9276 un0mulcl 9277 fseq1p1m1 10163 fsumge1 11607 fprodsplit1f 11780 phicl2 12355 ennnfonelemhf1o 12573 imasaddfnlemg 12900 imasaddflemg 12902 0subm 13059 gsumvallem2 13068 trivsubgd 13273 trivsubgsnd 13274 trivnsgd 13290 kerf1ghm 13347 lsssn0 13869 lss0ss 13870 lsptpcl 13893 lspsnvsi 13917 lspun0 13924 mulgrhm2 14109 zndvds 14148 rest0 14358 iscnp4 14397 cnconst2 14412 cnpdis 14421 txdis 14456 txdis1cn 14457 fsumcncntop 14746 dvef 14906 plyf 14916 elplyr 14919 elplyd 14920 ply1term 14922 plyaddlem 14928 plymullem 14929 plycolemc 14936 plycn 14940 bj-omtrans 15518 pwtrufal 15558 |
Copyright terms: Public domain | W3C validator |