| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssd | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| snssd.1 |
|
| Ref | Expression |
|---|---|
| snssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssd.1 |
. 2
| |
| 2 | snssg 3778 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-sn 3649 |
| This theorem is referenced by: pwntru 4259 ecinxp 6720 xpdom3m 6954 ac6sfi 7021 undifdc 7047 iunfidisj 7074 fidcenumlemr 7083 ssfii 7102 en2other2 7335 pw1m 7370 un0addcl 9363 un0mulcl 9364 fseq1p1m1 10251 fsumge1 11887 fprodsplit1f 12060 bitsinv1 12388 phicl2 12651 ennnfonelemhf1o 12899 imasaddfnlemg 13261 imasaddflemg 13263 0subm 13431 gsumvallem2 13440 trivsubgd 13651 trivsubgsnd 13652 trivnsgd 13668 kerf1ghm 13725 lsssn0 14247 lss0ss 14248 lsptpcl 14271 lspsnvsi 14295 lspun0 14302 mulgrhm2 14487 zndvds 14526 rest0 14766 iscnp4 14805 cnconst2 14820 cnpdis 14829 txdis 14864 txdis1cn 14865 fsumcncntop 15154 dvef 15314 plyf 15324 elplyr 15327 elplyd 15328 ply1term 15330 plyaddlem 15336 plymullem 15337 plycolemc 15345 plycn 15349 dvply2g 15353 perfectlem2 15587 upgr1elem1 15828 bj-omtrans 16091 pwtrufal 16136 |
| Copyright terms: Public domain | W3C validator |