| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssd | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| snssd.1 |
|
| Ref | Expression |
|---|---|
| snssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssd.1 |
. 2
| |
| 2 | snssg 3802 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-sn 3672 |
| This theorem is referenced by: pwntru 4283 ecinxp 6757 xpdom3m 6993 ac6sfi 7060 undifdc 7086 iunfidisj 7113 fidcenumlemr 7122 ssfii 7141 en2other2 7374 pw1m 7409 un0addcl 9402 un0mulcl 9403 fseq1p1m1 10290 fsumge1 11972 fprodsplit1f 12145 bitsinv1 12473 phicl2 12736 ennnfonelemhf1o 12984 imasaddfnlemg 13347 imasaddflemg 13349 0subm 13517 gsumvallem2 13526 trivsubgd 13737 trivsubgsnd 13738 trivnsgd 13754 kerf1ghm 13811 lsssn0 14334 lss0ss 14335 lsptpcl 14358 lspsnvsi 14382 lspun0 14389 mulgrhm2 14574 zndvds 14613 rest0 14853 iscnp4 14892 cnconst2 14907 cnpdis 14916 txdis 14951 txdis1cn 14952 fsumcncntop 15241 dvef 15401 plyf 15411 elplyr 15414 elplyd 15415 ply1term 15417 plyaddlem 15423 plymullem 15424 plycolemc 15432 plycn 15436 dvply2g 15440 perfectlem2 15674 upgr1elem1 15920 bj-omtrans 16319 pwtrufal 16363 |
| Copyright terms: Public domain | W3C validator |