| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssd | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| snssd.1 |
|
| Ref | Expression |
|---|---|
| snssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssd.1 |
. 2
| |
| 2 | snssg 3757 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3629 |
| This theorem is referenced by: pwntru 4233 ecinxp 6670 xpdom3m 6894 ac6sfi 6960 undifdc 6986 iunfidisj 7013 fidcenumlemr 7022 ssfii 7041 en2other2 7265 un0addcl 9284 un0mulcl 9285 fseq1p1m1 10171 fsumge1 11628 fprodsplit1f 11801 bitsinv1 12129 phicl2 12392 ennnfonelemhf1o 12640 imasaddfnlemg 12967 imasaddflemg 12969 0subm 13126 gsumvallem2 13135 trivsubgd 13340 trivsubgsnd 13341 trivnsgd 13357 kerf1ghm 13414 lsssn0 13936 lss0ss 13937 lsptpcl 13960 lspsnvsi 13984 lspun0 13991 mulgrhm2 14176 zndvds 14215 rest0 14425 iscnp4 14464 cnconst2 14479 cnpdis 14488 txdis 14523 txdis1cn 14524 fsumcncntop 14813 dvef 14973 plyf 14983 elplyr 14986 elplyd 14987 ply1term 14989 plyaddlem 14995 plymullem 14996 plycolemc 15004 plycn 15008 dvply2g 15012 perfectlem2 15246 bj-omtrans 15612 pwtrufal 15652 |
| Copyright terms: Public domain | W3C validator |