Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snssd | Unicode version |
Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
snssd.1 |
Ref | Expression |
---|---|
snssd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssd.1 | . 2 | |
2 | snssg 3709 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | 1, 3 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wcel 2136 wss 3116 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-sn 3582 |
This theorem is referenced by: pwntru 4178 ecinxp 6576 xpdom3m 6800 ac6sfi 6864 undifdc 6889 iunfidisj 6911 fidcenumlemr 6920 ssfii 6939 en2other2 7152 un0addcl 9147 un0mulcl 9148 fseq1p1m1 10029 fsumge1 11402 fprodsplit1f 11575 phicl2 12146 ennnfonelemhf1o 12346 rest0 12819 iscnp4 12858 cnconst2 12873 cnpdis 12882 txdis 12917 txdis1cn 12918 fsumcncntop 13196 dvef 13328 bj-omtrans 13838 pwtrufal 13877 |
Copyright terms: Public domain | W3C validator |