| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssd | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| snssd.1 |
|
| Ref | Expression |
|---|---|
| snssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssd.1 |
. 2
| |
| 2 | snssg 3757 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3629 |
| This theorem is referenced by: pwntru 4233 ecinxp 6678 xpdom3m 6902 ac6sfi 6968 undifdc 6994 iunfidisj 7021 fidcenumlemr 7030 ssfii 7049 en2other2 7275 un0addcl 9299 un0mulcl 9300 fseq1p1m1 10186 fsumge1 11643 fprodsplit1f 11816 bitsinv1 12144 phicl2 12407 ennnfonelemhf1o 12655 imasaddfnlemg 13016 imasaddflemg 13018 0subm 13186 gsumvallem2 13195 trivsubgd 13406 trivsubgsnd 13407 trivnsgd 13423 kerf1ghm 13480 lsssn0 14002 lss0ss 14003 lsptpcl 14026 lspsnvsi 14050 lspun0 14057 mulgrhm2 14242 zndvds 14281 rest0 14499 iscnp4 14538 cnconst2 14553 cnpdis 14562 txdis 14597 txdis1cn 14598 fsumcncntop 14887 dvef 15047 plyf 15057 elplyr 15060 elplyd 15061 ply1term 15063 plyaddlem 15069 plymullem 15070 plycolemc 15078 plycn 15082 dvply2g 15086 perfectlem2 15320 bj-omtrans 15686 pwtrufal 15728 |
| Copyright terms: Public domain | W3C validator |