Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snssd | Unicode version |
Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
snssd.1 |
Ref | Expression |
---|---|
snssd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssd.1 | . 2 | |
2 | snssg 3714 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | 1, 3 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wcel 2141 wss 3121 csn 3581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-sn 3587 |
This theorem is referenced by: pwntru 4183 ecinxp 6584 xpdom3m 6808 ac6sfi 6872 undifdc 6897 iunfidisj 6919 fidcenumlemr 6928 ssfii 6947 en2other2 7160 un0addcl 9155 un0mulcl 9156 fseq1p1m1 10037 fsumge1 11411 fprodsplit1f 11584 phicl2 12155 ennnfonelemhf1o 12355 0subm 12689 rest0 12932 iscnp4 12971 cnconst2 12986 cnpdis 12995 txdis 13030 txdis1cn 13031 fsumcncntop 13309 dvef 13441 bj-omtrans 13951 pwtrufal 13990 |
Copyright terms: Public domain | W3C validator |