| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difsnss | GIF version | ||
| Description: If we remove a single element from a class then put it back in, we end up with a subset of the original class. If equality is decidable, we can replace subset with equality as seen in nndifsnid 6574. (Contributed by Jim Kingdon, 10-Aug-2018.) |
| Ref | Expression |
|---|---|
| difsnss | ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 3308 | . 2 ⊢ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = ({𝐵} ∪ (𝐴 ∖ {𝐵})) | |
| 2 | snssi 3767 | . . 3 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 3 | undifss 3532 | . . 3 ⊢ ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∪ (𝐴 ∖ {𝐵})) ⊆ 𝐴) | |
| 4 | 2, 3 | sylib 122 | . 2 ⊢ (𝐵 ∈ 𝐴 → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ⊆ 𝐴) |
| 5 | 1, 4 | eqsstrid 3230 | 1 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∖ cdif 3154 ∪ cun 3155 ⊆ wss 3157 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 |
| This theorem is referenced by: fnsnsplitss 5764 dcdifsnid 6571 |
| Copyright terms: Public domain | W3C validator |