ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsnss GIF version

Theorem difsnss 3785
Description: If we remove a single element from a class then put it back in, we end up with a subset of the original class. If equality is decidable, we can replace subset with equality as seen in nndifsnid 6606. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
difsnss (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴)

Proof of Theorem difsnss
StepHypRef Expression
1 uncom 3321 . 2 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = ({𝐵} ∪ (𝐴 ∖ {𝐵}))
2 snssi 3783 . . 3 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
3 undifss 3545 . . 3 ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∪ (𝐴 ∖ {𝐵})) ⊆ 𝐴)
42, 3sylib 122 . 2 (𝐵𝐴 → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ⊆ 𝐴)
51, 4eqsstrid 3243 1 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  cdif 3167  cun 3168  wss 3170  {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644
This theorem is referenced by:  fnsnsplitss  5796  dcdifsnid  6603
  Copyright terms: Public domain W3C validator