| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difsnss | GIF version | ||
| Description: If we remove a single element from a class then put it back in, we end up with a subset of the original class. If equality is decidable, we can replace subset with equality as seen in nndifsnid 6583. (Contributed by Jim Kingdon, 10-Aug-2018.) |
| Ref | Expression |
|---|---|
| difsnss | ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 3316 | . 2 ⊢ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = ({𝐵} ∪ (𝐴 ∖ {𝐵})) | |
| 2 | snssi 3776 | . . 3 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 3 | undifss 3540 | . . 3 ⊢ ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∪ (𝐴 ∖ {𝐵})) ⊆ 𝐴) | |
| 4 | 2, 3 | sylib 122 | . 2 ⊢ (𝐵 ∈ 𝐴 → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ⊆ 𝐴) |
| 5 | 1, 4 | eqsstrid 3238 | 1 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ∖ cdif 3162 ∪ cun 3163 ⊆ wss 3165 {csn 3632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 |
| This theorem is referenced by: fnsnsplitss 5773 dcdifsnid 6580 |
| Copyright terms: Public domain | W3C validator |