ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsnss GIF version

Theorem difsnss 3719
Description: If we remove a single element from a class then put it back in, we end up with a subset of the original class. If equality is decidable, we can replace subset with equality as seen in nndifsnid 6475. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
difsnss (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴)

Proof of Theorem difsnss
StepHypRef Expression
1 uncom 3266 . 2 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = ({𝐵} ∪ (𝐴 ∖ {𝐵}))
2 snssi 3717 . . 3 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
3 undifss 3489 . . 3 ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∪ (𝐴 ∖ {𝐵})) ⊆ 𝐴)
42, 3sylib 121 . 2 (𝐵𝐴 → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ⊆ 𝐴)
51, 4eqsstrid 3188 1 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  cdif 3113  cun 3114  wss 3116  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582
This theorem is referenced by:  fnsnsplitss  5684  dcdifsnid  6472
  Copyright terms: Public domain W3C validator