ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsnss GIF version

Theorem difsnss 3726
Description: If we remove a single element from a class then put it back in, we end up with a subset of the original class. If equality is decidable, we can replace subset with equality as seen in nndifsnid 6486. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
difsnss (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴)

Proof of Theorem difsnss
StepHypRef Expression
1 uncom 3271 . 2 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = ({𝐵} ∪ (𝐴 ∖ {𝐵}))
2 snssi 3724 . . 3 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
3 undifss 3495 . . 3 ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∪ (𝐴 ∖ {𝐵})) ⊆ 𝐴)
42, 3sylib 121 . 2 (𝐵𝐴 → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ⊆ 𝐴)
51, 4eqsstrid 3193 1 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  cdif 3118  cun 3119  wss 3121  {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589
This theorem is referenced by:  fnsnsplitss  5695  dcdifsnid  6483
  Copyright terms: Public domain W3C validator