ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndifsnid Unicode version

Theorem nndifsnid 6616
Description: If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3790 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.)
Assertion
Ref Expression
nndifsnid  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )

Proof of Theorem nndifsnid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4672 . . . . . 6  |-  ( ( x  e.  A  /\  A  e.  om )  ->  x  e.  om )
21expcom 116 . . . . 5  |-  ( A  e.  om  ->  (
x  e.  A  ->  x  e.  om )
)
3 elnn 4672 . . . . . 6  |-  ( ( y  e.  A  /\  A  e.  om )  ->  y  e.  om )
43expcom 116 . . . . 5  |-  ( A  e.  om  ->  (
y  e.  A  -> 
y  e.  om )
)
52, 4anim12d 335 . . . 4  |-  ( A  e.  om  ->  (
( x  e.  A  /\  y  e.  A
)  ->  ( x  e.  om  /\  y  e. 
om ) ) )
6 nndceq 6608 . . . 4  |-  ( ( x  e.  om  /\  y  e.  om )  -> DECID  x  =  y )
75, 6syl6 33 . . 3  |-  ( A  e.  om  ->  (
( x  e.  A  /\  y  e.  A
)  -> DECID  x  =  y
) )
87ralrimivv 2589 . 2  |-  ( A  e.  om  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
9 dcdifsnid 6613 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  (
( A  \  { B } )  u.  { B } )  =  A )
108, 9sylan 283 1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    = wceq 1373    e. wcel 2178   A.wral 2486    \ cdif 3171    u. cun 3172   {csn 3643   omcom 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657
This theorem is referenced by:  phplem2  6975
  Copyright terms: Public domain W3C validator