ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndifsnid Unicode version

Theorem nndifsnid 6562
Description: If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3765 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.)
Assertion
Ref Expression
nndifsnid  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )

Proof of Theorem nndifsnid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4639 . . . . . 6  |-  ( ( x  e.  A  /\  A  e.  om )  ->  x  e.  om )
21expcom 116 . . . . 5  |-  ( A  e.  om  ->  (
x  e.  A  ->  x  e.  om )
)
3 elnn 4639 . . . . . 6  |-  ( ( y  e.  A  /\  A  e.  om )  ->  y  e.  om )
43expcom 116 . . . . 5  |-  ( A  e.  om  ->  (
y  e.  A  -> 
y  e.  om )
)
52, 4anim12d 335 . . . 4  |-  ( A  e.  om  ->  (
( x  e.  A  /\  y  e.  A
)  ->  ( x  e.  om  /\  y  e. 
om ) ) )
6 nndceq 6554 . . . 4  |-  ( ( x  e.  om  /\  y  e.  om )  -> DECID  x  =  y )
75, 6syl6 33 . . 3  |-  ( A  e.  om  ->  (
( x  e.  A  /\  y  e.  A
)  -> DECID  x  =  y
) )
87ralrimivv 2575 . 2  |-  ( A  e.  om  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
9 dcdifsnid 6559 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  (
( A  \  { B } )  u.  { B } )  =  A )
108, 9sylan 283 1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2164   A.wral 2472    \ cdif 3151    u. cun 3152   {csn 3619   omcom 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-int 3872  df-tr 4129  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624
This theorem is referenced by:  phplem2  6911
  Copyright terms: Public domain W3C validator