ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndifsnid Unicode version

Theorem nndifsnid 6511
Description: If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3740 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.)
Assertion
Ref Expression
nndifsnid  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )

Proof of Theorem nndifsnid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4607 . . . . . 6  |-  ( ( x  e.  A  /\  A  e.  om )  ->  x  e.  om )
21expcom 116 . . . . 5  |-  ( A  e.  om  ->  (
x  e.  A  ->  x  e.  om )
)
3 elnn 4607 . . . . . 6  |-  ( ( y  e.  A  /\  A  e.  om )  ->  y  e.  om )
43expcom 116 . . . . 5  |-  ( A  e.  om  ->  (
y  e.  A  -> 
y  e.  om )
)
52, 4anim12d 335 . . . 4  |-  ( A  e.  om  ->  (
( x  e.  A  /\  y  e.  A
)  ->  ( x  e.  om  /\  y  e. 
om ) ) )
6 nndceq 6503 . . . 4  |-  ( ( x  e.  om  /\  y  e.  om )  -> DECID  x  =  y )
75, 6syl6 33 . . 3  |-  ( A  e.  om  ->  (
( x  e.  A  /\  y  e.  A
)  -> DECID  x  =  y
) )
87ralrimivv 2558 . 2  |-  ( A  e.  om  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
9 dcdifsnid 6508 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  (
( A  \  { B } )  u.  { B } )  =  A )
108, 9sylan 283 1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455    \ cdif 3128    u. cun 3129   {csn 3594   omcom 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592
This theorem is referenced by:  phplem2  6856
  Copyright terms: Public domain W3C validator