| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nndifsnid | Unicode version | ||
| Description: If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3768 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.) | 
| Ref | Expression | 
|---|---|
| nndifsnid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elnn 4642 | 
. . . . . 6
 | |
| 2 | 1 | expcom 116 | 
. . . . 5
 | 
| 3 | elnn 4642 | 
. . . . . 6
 | |
| 4 | 3 | expcom 116 | 
. . . . 5
 | 
| 5 | 2, 4 | anim12d 335 | 
. . . 4
 | 
| 6 | nndceq 6557 | 
. . . 4
 | |
| 7 | 5, 6 | syl6 33 | 
. . 3
 | 
| 8 | 7 | ralrimivv 2578 | 
. 2
 | 
| 9 | dcdifsnid 6562 | 
. 2
 | |
| 10 | 8, 9 | sylan 283 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: phplem2 6914 | 
| Copyright terms: Public domain | W3C validator |