ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndifsnid Unicode version

Theorem nndifsnid 6486
Description: If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3726 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.)
Assertion
Ref Expression
nndifsnid  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )

Proof of Theorem nndifsnid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4590 . . . . . 6  |-  ( ( x  e.  A  /\  A  e.  om )  ->  x  e.  om )
21expcom 115 . . . . 5  |-  ( A  e.  om  ->  (
x  e.  A  ->  x  e.  om )
)
3 elnn 4590 . . . . . 6  |-  ( ( y  e.  A  /\  A  e.  om )  ->  y  e.  om )
43expcom 115 . . . . 5  |-  ( A  e.  om  ->  (
y  e.  A  -> 
y  e.  om )
)
52, 4anim12d 333 . . . 4  |-  ( A  e.  om  ->  (
( x  e.  A  /\  y  e.  A
)  ->  ( x  e.  om  /\  y  e. 
om ) ) )
6 nndceq 6478 . . . 4  |-  ( ( x  e.  om  /\  y  e.  om )  -> DECID  x  =  y )
75, 6syl6 33 . . 3  |-  ( A  e.  om  ->  (
( x  e.  A  /\  y  e.  A
)  -> DECID  x  =  y
) )
87ralrimivv 2551 . 2  |-  ( A  e.  om  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
9 dcdifsnid 6483 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  (
( A  \  { B } )  u.  { B } )  =  A )
108, 9sylan 281 1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 829    = wceq 1348    e. wcel 2141   A.wral 2448    \ cdif 3118    u. cun 3119   {csn 3583   omcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575
This theorem is referenced by:  phplem2  6831
  Copyright terms: Public domain W3C validator