| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nndifsnid | Unicode version | ||
| Description: If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3814 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.) |
| Ref | Expression |
|---|---|
| nndifsnid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn 4698 |
. . . . . 6
| |
| 2 | 1 | expcom 116 |
. . . . 5
|
| 3 | elnn 4698 |
. . . . . 6
| |
| 4 | 3 | expcom 116 |
. . . . 5
|
| 5 | 2, 4 | anim12d 335 |
. . . 4
|
| 6 | nndceq 6645 |
. . . 4
| |
| 7 | 5, 6 | syl6 33 |
. . 3
|
| 8 | 7 | ralrimivv 2611 |
. 2
|
| 9 | dcdifsnid 6650 |
. 2
| |
| 10 | 8, 9 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: phplem2 7014 |
| Copyright terms: Public domain | W3C validator |