ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndifsnid Unicode version

Theorem nndifsnid 6483
Description: If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3724 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.)
Assertion
Ref Expression
nndifsnid  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )

Proof of Theorem nndifsnid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4588 . . . . . 6  |-  ( ( x  e.  A  /\  A  e.  om )  ->  x  e.  om )
21expcom 115 . . . . 5  |-  ( A  e.  om  ->  (
x  e.  A  ->  x  e.  om )
)
3 elnn 4588 . . . . . 6  |-  ( ( y  e.  A  /\  A  e.  om )  ->  y  e.  om )
43expcom 115 . . . . 5  |-  ( A  e.  om  ->  (
y  e.  A  -> 
y  e.  om )
)
52, 4anim12d 333 . . . 4  |-  ( A  e.  om  ->  (
( x  e.  A  /\  y  e.  A
)  ->  ( x  e.  om  /\  y  e. 
om ) ) )
6 nndceq 6475 . . . 4  |-  ( ( x  e.  om  /\  y  e.  om )  -> DECID  x  =  y )
75, 6syl6 33 . . 3  |-  ( A  e.  om  ->  (
( x  e.  A  /\  y  e.  A
)  -> DECID  x  =  y
) )
87ralrimivv 2551 . 2  |-  ( A  e.  om  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
9 dcdifsnid 6480 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  (
( A  \  { B } )  u.  { B } )  =  A )
108, 9sylan 281 1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 829    = wceq 1348    e. wcel 2141   A.wral 2448    \ cdif 3118    u. cun 3119   {csn 3581   omcom 4572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-uni 3795  df-int 3830  df-tr 4086  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573
This theorem is referenced by:  phplem2  6827
  Copyright terms: Public domain W3C validator