Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nndifsnid | Unicode version |
Description: If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3724 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.) |
Ref | Expression |
---|---|
nndifsnid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn 4588 | . . . . . 6 | |
2 | 1 | expcom 115 | . . . . 5 |
3 | elnn 4588 | . . . . . 6 | |
4 | 3 | expcom 115 | . . . . 5 |
5 | 2, 4 | anim12d 333 | . . . 4 |
6 | nndceq 6475 | . . . 4 DECID | |
7 | 5, 6 | syl6 33 | . . 3 DECID |
8 | 7 | ralrimivv 2551 | . 2 DECID |
9 | dcdifsnid 6480 | . 2 DECID | |
10 | 8, 9 | sylan 281 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 DECID wdc 829 wceq 1348 wcel 2141 wral 2448 cdif 3118 cun 3119 csn 3581 com 4572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-uni 3795 df-int 3830 df-tr 4086 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 |
This theorem is referenced by: phplem2 6827 |
Copyright terms: Public domain | W3C validator |