| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djueq1 | GIF version | ||
| Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| djueq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | djueq12 7167 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐶) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊔ cdju 7165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-opab 4122 df-xp 4699 df-dju 7166 |
| This theorem is referenced by: enumct 7243 ctssexmid 7278 ctiunctal 12927 unct 12928 subctctexmid 16139 sbthom 16167 |
| Copyright terms: Public domain | W3C validator |