ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djueq1 GIF version

Theorem djueq1 7005
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem djueq1
StepHypRef Expression
1 eqid 2165 . 2 𝐶 = 𝐶
2 djueq12 7004 . 2 ((𝐴 = 𝐵𝐶 = 𝐶) → (𝐴𝐶) = (𝐵𝐶))
31, 2mpan2 422 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cdju 7002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-opab 4044  df-xp 4610  df-dju 7003
This theorem is referenced by:  enumct  7080  ctssexmid  7114  ctiunctal  12374  unct  12375  subctctexmid  13881  sbthom  13905
  Copyright terms: Public domain W3C validator