| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djueq1 | GIF version | ||
| Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| djueq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | djueq12 7141 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐶) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊔ cdju 7139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-opab 4106 df-xp 4681 df-dju 7140 |
| This theorem is referenced by: enumct 7217 ctssexmid 7252 ctiunctal 12812 unct 12813 subctctexmid 15937 sbthom 15965 |
| Copyright terms: Public domain | W3C validator |