Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djueq1 | GIF version |
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
djueq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | djueq12 6973 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐶) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) | |
3 | 1, 2 | mpan2 422 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ⊔ cdju 6971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-opab 4026 df-xp 4589 df-dju 6972 |
This theorem is referenced by: enumct 7049 ctssexmid 7076 ctiunctal 12142 unct 12143 subctctexmid 13534 sbthom 13560 |
Copyright terms: Public domain | W3C validator |