ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djueq1 GIF version

Theorem djueq1 7142
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem djueq1
StepHypRef Expression
1 eqid 2205 . 2 𝐶 = 𝐶
2 djueq12 7141 . 2 ((𝐴 = 𝐵𝐶 = 𝐶) → (𝐴𝐶) = (𝐵𝐶))
31, 2mpan2 425 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cdju 7139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-opab 4106  df-xp 4681  df-dju 7140
This theorem is referenced by:  enumct  7217  ctssexmid  7252  ctiunctal  12812  unct  12813  subctctexmid  15937  sbthom  15965
  Copyright terms: Public domain W3C validator