| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > djueq1 | GIF version | ||
| Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) | 
| Ref | Expression | 
|---|---|
| djueq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | djueq12 7105 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐶) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ⊔ cdju 7103 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-opab 4095 df-xp 4669 df-dju 7104 | 
| This theorem is referenced by: enumct 7181 ctssexmid 7216 ctiunctal 12658 unct 12659 subctctexmid 15645 sbthom 15670 | 
| Copyright terms: Public domain | W3C validator |