| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djueq1 | GIF version | ||
| Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| djueq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | djueq12 7206 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐶) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊔ cdju 7204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-opab 4146 df-xp 4725 df-dju 7205 |
| This theorem is referenced by: enumct 7282 ctssexmid 7317 ctiunctal 13012 unct 13013 subctctexmid 16366 sbthom 16394 |
| Copyright terms: Public domain | W3C validator |