Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sbthom Unicode version

Theorem sbthom 16002
Description: Schroeder-Bernstein is not possible even for  om. We know by exmidsbth 16000 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is  om? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
sbthom  |-  ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  -> EXMID )

Proof of Theorem sbthom
Dummy variables  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 p0ex 4233 . . . . . . . . . . 11  |-  { (/) }  e.  _V
21ssex 4182 . . . . . . . . . 10  |-  ( y 
C_  { (/) }  ->  y  e.  _V )
32adantl 277 . . . . . . . . 9  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  y  e.  _V )
4 omex 4642 . . . . . . . . 9  |-  om  e.  _V
5 djuex 7147 . . . . . . . . 9  |-  ( ( y  e.  _V  /\  om  e.  _V )  -> 
( y om )  e.  _V )
63, 4, 5sylancl 413 . . . . . . . 8  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
y om )  e.  _V )
7 simpll 527 . . . . . . . 8  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )
)
8 ssdomg 6872 . . . . . . . . . . . 12  |-  ( {
(/) }  e.  _V  ->  ( y  C_  { (/) }  ->  y  ~<_  { (/) } ) )
91, 8ax-mp 5 . . . . . . . . . . 11  |-  ( y 
C_  { (/) }  ->  y  ~<_  { (/) } )
10 domrefg 6860 . . . . . . . . . . . . . 14  |-  ( om  e.  _V  ->  om  ~<_  om )
114, 10ax-mp 5 . . . . . . . . . . . . 13  |-  om  ~<_  om
12 djudom 7197 . . . . . . . . . . . . 13  |-  ( ( y  ~<_  { (/) }  /\  om  ~<_  om )  ->  (
y om )  ~<_  ( {
(/) } om ) )
1311, 12mpan2 425 . . . . . . . . . . . 12  |-  ( y  ~<_  { (/) }  ->  (
y om )  ~<_  ( {
(/) } om ) )
14 df1o2 6517 . . . . . . . . . . . . 13  |-  1o  =  { (/) }
15 djueq1 7144 . . . . . . . . . . . . 13  |-  ( 1o  =  { (/) }  ->  ( 1o om )  =  ( { (/) } om ) )
1614, 15ax-mp 5 . . . . . . . . . . . 12  |-  ( 1o om )  =  ( {
(/) } om )
1713, 16breqtrrdi 4087 . . . . . . . . . . 11  |-  ( y  ~<_  { (/) }  ->  (
y om )  ~<_  ( 1o om ) )
18 1onn 6608 . . . . . . . . . . . . . 14  |-  1o  e.  om
19 endjusym 7200 . . . . . . . . . . . . . 14  |-  ( ( om  e.  _V  /\  1o  e.  om )  -> 
( om 1o )  ~~  ( 1o om ) )
204, 18, 19mp2an 426 . . . . . . . . . . . . 13  |-  ( om 1o )  ~~  ( 1o om )
21 omp1eom 7199 . . . . . . . . . . . . 13  |-  ( om 1o )  ~~  om
2220, 21entr3i 6882 . . . . . . . . . . . 12  |-  ( 1o om )  ~~  om
23 domentr 6885 . . . . . . . . . . . 12  |-  ( ( ( y om )  ~<_  ( 1o om )  /\  ( 1o om )  ~~  om )  ->  ( y om )  ~<_  om )
2422, 23mpan2 425 . . . . . . . . . . 11  |-  ( ( y om )  ~<_  ( 1o om )  ->  ( y om )  ~<_  om )
259, 17, 243syl 17 . . . . . . . . . 10  |-  ( y 
C_  { (/) }  ->  ( y om )  ~<_  om )
2625adantl 277 . . . . . . . . 9  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
y om )  ~<_  om )
27 djudomr 7334 . . . . . . . . . 10  |-  ( ( y  e.  _V  /\  om  e.  _V )  ->  om 
~<_  ( y om )
)
283, 4, 27sylancl 413 . . . . . . . . 9  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  om  ~<_  ( y om ) )
2926, 28jca 306 . . . . . . . 8  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
( y om )  ~<_  om  /\  om  ~<_  ( y om ) ) )
30 breq1 4048 . . . . . . . . . . 11  |-  ( x  =  ( y om )  ->  ( x  ~<_  om  <->  ( y om )  ~<_  om ) )
31 breq2 4049 . . . . . . . . . . 11  |-  ( x  =  ( y om )  ->  ( om  ~<_  x  <->  om  ~<_  ( y om ) ) )
3230, 31anbi12d 473 . . . . . . . . . 10  |-  ( x  =  ( y om )  ->  ( ( x  ~<_  om 
/\  om  ~<_  x )  <->  ( ( y om )  ~<_  om  /\  om  ~<_  ( y om ) ) ) )
33 breq1 4048 . . . . . . . . . 10  |-  ( x  =  ( y om )  ->  ( x  ~~  om  <->  ( y om )  ~~  om ) )
3432, 33imbi12d 234 . . . . . . . . 9  |-  ( x  =  ( y om )  ->  ( ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om ) 
<->  ( ( ( y om )  ~<_  om  /\  om  ~<_  ( y om ) )  ->  ( y om )  ~~  om ) ) )
3534spcgv 2860 . . . . . . . 8  |-  ( ( y om )  e.  _V  ->  ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  ->  (
( ( y om )  ~<_  om  /\  om  ~<_  ( y om ) )  ->  (
y om )  ~~  om ) ) )
366, 7, 29, 35syl3c 63 . . . . . . 7  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
y om )  ~~  om )
3736ensymd 6877 . . . . . 6  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  om  ~~  ( y om ) )
38 bren 6837 . . . . . 6  |-  ( om 
~~  ( y om )  <->  E. f  f : om -1-1-onto-> (
y om ) )
3937, 38sylib 122 . . . . 5  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  E. f 
f : om -1-1-onto-> ( y om )
)
40 simpllr 534 . . . . . 6  |-  ( ( ( ( A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  { (/) } )  /\  f : om -1-1-onto-> (
y om ) )  ->  om  e. Omni )
41 simplr 528 . . . . . 6  |-  ( ( ( ( A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  { (/) } )  /\  f : om -1-1-onto-> (
y om ) )  -> 
y  C_  { (/) } )
42 simpr 110 . . . . . 6  |-  ( ( ( ( A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  { (/) } )  /\  f : om -1-1-onto-> (
y om ) )  -> 
f : om -1-1-onto-> ( y om )
)
4340, 41, 42sbthomlem 16001 . . . . 5  |-  ( ( ( ( A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  { (/) } )  /\  f : om -1-1-onto-> (
y om ) )  -> 
( y  =  (/)  \/  y  =  { (/) } ) )
4439, 43exlimddv 1922 . . . 4  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
y  =  (/)  \/  y  =  { (/) } ) )
4544ex 115 . . 3  |-  ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  ->  ( y  C_  { (/) }  ->  ( y  =  (/)  \/  y  =  { (/)
} ) ) )
4645alrimiv 1897 . 2  |-  ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  ->  A. y ( y 
C_  { (/) }  ->  ( y  =  (/)  \/  y  =  { (/) } ) ) )
47 exmid01 4243 . 2  |-  (EXMID  <->  A. y
( y  C_  { (/) }  ->  ( y  =  (/)  \/  y  =  { (/)
} ) ) )
4846, 47sylibr 134 1  |-  ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  -> EXMID )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772    C_ wss 3166   (/)c0 3460   {csn 3633   class class class wbr 4045  EXMIDwem 4239   omcom 4639   -1-1-onto->wf1o 5271   1oc1o 6497    ~~ cen 6827    ~<_ cdom 6828   ⊔ cdju 7141  Omnicomni 7238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-exmid 4240  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-1o 6504  df-2o 6505  df-er 6622  df-map 6739  df-en 6830  df-dom 6831  df-dju 7142  df-inl 7151  df-inr 7152  df-case 7188  df-omni 7239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator