Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sbthom Unicode version

Theorem sbthom 13394
Description: Schroeder-Bernstein is not possible even for  om. We know by exmidsbth 13392 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is  om? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
sbthom  |-  ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  -> EXMID )

Proof of Theorem sbthom
Dummy variables  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 p0ex 4119 . . . . . . . . . . 11  |-  { (/) }  e.  _V
21ssex 4072 . . . . . . . . . 10  |-  ( y 
C_  { (/) }  ->  y  e.  _V )
32adantl 275 . . . . . . . . 9  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  y  e.  _V )
4 omex 4514 . . . . . . . . 9  |-  om  e.  _V
5 djuex 6935 . . . . . . . . 9  |-  ( ( y  e.  _V  /\  om  e.  _V )  -> 
( y om )  e.  _V )
63, 4, 5sylancl 410 . . . . . . . 8  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
y om )  e.  _V )
7 simpll 519 . . . . . . . 8  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )
)
8 ssdomg 6679 . . . . . . . . . . . 12  |-  ( {
(/) }  e.  _V  ->  ( y  C_  { (/) }  ->  y  ~<_  { (/) } ) )
91, 8ax-mp 5 . . . . . . . . . . 11  |-  ( y 
C_  { (/) }  ->  y  ~<_  { (/) } )
10 domrefg 6668 . . . . . . . . . . . . . 14  |-  ( om  e.  _V  ->  om  ~<_  om )
114, 10ax-mp 5 . . . . . . . . . . . . 13  |-  om  ~<_  om
12 djudom 6985 . . . . . . . . . . . . 13  |-  ( ( y  ~<_  { (/) }  /\  om  ~<_  om )  ->  (
y om )  ~<_  ( {
(/) } om ) )
1311, 12mpan2 422 . . . . . . . . . . . 12  |-  ( y  ~<_  { (/) }  ->  (
y om )  ~<_  ( {
(/) } om ) )
14 df1o2 6333 . . . . . . . . . . . . 13  |-  1o  =  { (/) }
15 djueq1 6932 . . . . . . . . . . . . 13  |-  ( 1o  =  { (/) }  ->  ( 1o om )  =  ( { (/) } om ) )
1614, 15ax-mp 5 . . . . . . . . . . . 12  |-  ( 1o om )  =  ( {
(/) } om )
1713, 16breqtrrdi 3977 . . . . . . . . . . 11  |-  ( y  ~<_  { (/) }  ->  (
y om )  ~<_  ( 1o om ) )
18 1onn 6423 . . . . . . . . . . . . . 14  |-  1o  e.  om
19 endjusym 6988 . . . . . . . . . . . . . 14  |-  ( ( om  e.  _V  /\  1o  e.  om )  -> 
( om 1o )  ~~  ( 1o om ) )
204, 18, 19mp2an 423 . . . . . . . . . . . . 13  |-  ( om 1o )  ~~  ( 1o om )
21 omp1eom 6987 . . . . . . . . . . . . 13  |-  ( om 1o )  ~~  om
2220, 21entr3i 6689 . . . . . . . . . . . 12  |-  ( 1o om )  ~~  om
23 domentr 6692 . . . . . . . . . . . 12  |-  ( ( ( y om )  ~<_  ( 1o om )  /\  ( 1o om )  ~~  om )  ->  ( y om )  ~<_  om )
2422, 23mpan2 422 . . . . . . . . . . 11  |-  ( ( y om )  ~<_  ( 1o om )  ->  ( y om )  ~<_  om )
259, 17, 243syl 17 . . . . . . . . . 10  |-  ( y 
C_  { (/) }  ->  ( y om )  ~<_  om )
2625adantl 275 . . . . . . . . 9  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
y om )  ~<_  om )
27 djudomr 7092 . . . . . . . . . 10  |-  ( ( y  e.  _V  /\  om  e.  _V )  ->  om 
~<_  ( y om )
)
283, 4, 27sylancl 410 . . . . . . . . 9  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  om  ~<_  ( y om ) )
2926, 28jca 304 . . . . . . . 8  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
( y om )  ~<_  om  /\  om  ~<_  ( y om ) ) )
30 breq1 3939 . . . . . . . . . . 11  |-  ( x  =  ( y om )  ->  ( x  ~<_  om  <->  ( y om )  ~<_  om ) )
31 breq2 3940 . . . . . . . . . . 11  |-  ( x  =  ( y om )  ->  ( om  ~<_  x  <->  om  ~<_  ( y om ) ) )
3230, 31anbi12d 465 . . . . . . . . . 10  |-  ( x  =  ( y om )  ->  ( ( x  ~<_  om 
/\  om  ~<_  x )  <->  ( ( y om )  ~<_  om  /\  om  ~<_  ( y om ) ) ) )
33 breq1 3939 . . . . . . . . . 10  |-  ( x  =  ( y om )  ->  ( x  ~~  om  <->  ( y om )  ~~  om ) )
3432, 33imbi12d 233 . . . . . . . . 9  |-  ( x  =  ( y om )  ->  ( ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om ) 
<->  ( ( ( y om )  ~<_  om  /\  om  ~<_  ( y om ) )  ->  ( y om )  ~~  om ) ) )
3534spcgv 2776 . . . . . . . 8  |-  ( ( y om )  e.  _V  ->  ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  ->  (
( ( y om )  ~<_  om  /\  om  ~<_  ( y om ) )  ->  (
y om )  ~~  om ) ) )
366, 7, 29, 35syl3c 63 . . . . . . 7  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
y om )  ~~  om )
3736ensymd 6684 . . . . . 6  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  om  ~~  ( y om ) )
38 bren 6648 . . . . . 6  |-  ( om 
~~  ( y om )  <->  E. f  f : om -1-1-onto-> (
y om ) )
3937, 38sylib 121 . . . . 5  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  E. f 
f : om -1-1-onto-> ( y om )
)
40 simpllr 524 . . . . . 6  |-  ( ( ( ( A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  { (/) } )  /\  f : om -1-1-onto-> (
y om ) )  ->  om  e. Omni )
41 simplr 520 . . . . . 6  |-  ( ( ( ( A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  { (/) } )  /\  f : om -1-1-onto-> (
y om ) )  -> 
y  C_  { (/) } )
42 simpr 109 . . . . . 6  |-  ( ( ( ( A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  { (/) } )  /\  f : om -1-1-onto-> (
y om ) )  -> 
f : om -1-1-onto-> ( y om )
)
4340, 41, 42sbthomlem 13393 . . . . 5  |-  ( ( ( ( A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  { (/) } )  /\  f : om -1-1-onto-> (
y om ) )  -> 
( y  =  (/)  \/  y  =  { (/) } ) )
4439, 43exlimddv 1871 . . . 4  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
y  =  (/)  \/  y  =  { (/) } ) )
4544ex 114 . . 3  |-  ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  ->  ( y  C_  { (/) }  ->  ( y  =  (/)  \/  y  =  { (/)
} ) ) )
4645alrimiv 1847 . 2  |-  ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  ->  A. y ( y 
C_  { (/) }  ->  ( y  =  (/)  \/  y  =  { (/) } ) ) )
47 exmid01 4128 . 2  |-  (EXMID  <->  A. y
( y  C_  { (/) }  ->  ( y  =  (/)  \/  y  =  { (/)
} ) ) )
4846, 47sylibr 133 1  |-  ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  -> EXMID )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698   A.wal 1330    = wceq 1332   E.wex 1469    e. wcel 1481   _Vcvv 2689    C_ wss 3075   (/)c0 3367   {csn 3531   class class class wbr 3936  EXMIDwem 4125   omcom 4511   -1-1-onto->wf1o 5129   1oc1o 6313    ~~ cen 6639    ~<_ cdom 6640   ⊔ cdju 6929  Omnicomni 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-exmid 4126  df-id 4222  df-iord 4295  df-on 4297  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-1o 6320  df-2o 6321  df-er 6436  df-map 6551  df-en 6642  df-dom 6643  df-dju 6930  df-inl 6939  df-inr 6940  df-case 6976  df-omni 7013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator