Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > sbthom | Unicode version |
Description: Schroeder-Bernstein is not possible even for . We know by exmidsbth 13978 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is ? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.) |
Ref | Expression |
---|---|
sbthom | Omni EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0ex 4172 | . . . . . . . . . . 11 | |
2 | 1 | ssex 4124 | . . . . . . . . . 10 |
3 | 2 | adantl 275 | . . . . . . . . 9 Omni |
4 | omex 4575 | . . . . . . . . 9 | |
5 | djuex 7016 | . . . . . . . . 9 ⊔ | |
6 | 3, 4, 5 | sylancl 411 | . . . . . . . 8 Omni ⊔ |
7 | simpll 524 | . . . . . . . 8 Omni | |
8 | ssdomg 6752 | . . . . . . . . . . . 12 | |
9 | 1, 8 | ax-mp 5 | . . . . . . . . . . 11 |
10 | domrefg 6741 | . . . . . . . . . . . . . 14 | |
11 | 4, 10 | ax-mp 5 | . . . . . . . . . . . . 13 |
12 | djudom 7066 | . . . . . . . . . . . . 13 ⊔ ⊔ | |
13 | 11, 12 | mpan2 423 | . . . . . . . . . . . 12 ⊔ ⊔ |
14 | df1o2 6405 | . . . . . . . . . . . . 13 | |
15 | djueq1 7013 | . . . . . . . . . . . . 13 ⊔ ⊔ | |
16 | 14, 15 | ax-mp 5 | . . . . . . . . . . . 12 ⊔ ⊔ |
17 | 13, 16 | breqtrrdi 4029 | . . . . . . . . . . 11 ⊔ ⊔ |
18 | 1onn 6496 | . . . . . . . . . . . . . 14 | |
19 | endjusym 7069 | . . . . . . . . . . . . . 14 ⊔ ⊔ | |
20 | 4, 18, 19 | mp2an 424 | . . . . . . . . . . . . 13 ⊔ ⊔ |
21 | omp1eom 7068 | . . . . . . . . . . . . 13 ⊔ | |
22 | 20, 21 | entr3i 6762 | . . . . . . . . . . . 12 ⊔ |
23 | domentr 6765 | . . . . . . . . . . . 12 ⊔ ⊔ ⊔ ⊔ | |
24 | 22, 23 | mpan2 423 | . . . . . . . . . . 11 ⊔ ⊔ ⊔ |
25 | 9, 17, 24 | 3syl 17 | . . . . . . . . . 10 ⊔ |
26 | 25 | adantl 275 | . . . . . . . . 9 Omni ⊔ |
27 | djudomr 7184 | . . . . . . . . . 10 ⊔ | |
28 | 3, 4, 27 | sylancl 411 | . . . . . . . . 9 Omni ⊔ |
29 | 26, 28 | jca 304 | . . . . . . . 8 Omni ⊔ ⊔ |
30 | breq1 3990 | . . . . . . . . . . 11 ⊔ ⊔ | |
31 | breq2 3991 | . . . . . . . . . . 11 ⊔ ⊔ | |
32 | 30, 31 | anbi12d 470 | . . . . . . . . . 10 ⊔ ⊔ ⊔ |
33 | breq1 3990 | . . . . . . . . . 10 ⊔ ⊔ | |
34 | 32, 33 | imbi12d 233 | . . . . . . . . 9 ⊔ ⊔ ⊔ ⊔ |
35 | 34 | spcgv 2817 | . . . . . . . 8 ⊔ ⊔ ⊔ ⊔ |
36 | 6, 7, 29, 35 | syl3c 63 | . . . . . . 7 Omni ⊔ |
37 | 36 | ensymd 6757 | . . . . . 6 Omni ⊔ |
38 | bren 6721 | . . . . . 6 ⊔ ⊔ | |
39 | 37, 38 | sylib 121 | . . . . 5 Omni ⊔ |
40 | simpllr 529 | . . . . . 6 Omni ⊔ Omni | |
41 | simplr 525 | . . . . . 6 Omni ⊔ | |
42 | simpr 109 | . . . . . 6 Omni ⊔ ⊔ | |
43 | 40, 41, 42 | sbthomlem 13979 | . . . . 5 Omni ⊔ |
44 | 39, 43 | exlimddv 1891 | . . . 4 Omni |
45 | 44 | ex 114 | . . 3 Omni |
46 | 45 | alrimiv 1867 | . 2 Omni |
47 | exmid01 4182 | . 2 EXMID | |
48 | 46, 47 | sylibr 133 | 1 Omni EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 wal 1346 wceq 1348 wex 1485 wcel 2141 cvv 2730 wss 3121 c0 3414 csn 3581 class class class wbr 3987 EXMIDwem 4178 com 4572 wf1o 5195 c1o 6385 cen 6712 cdom 6713 ⊔ cdju 7010 Omnicomni 7106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-exmid 4179 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-1o 6392 df-2o 6393 df-er 6509 df-map 6624 df-en 6715 df-dom 6716 df-dju 7011 df-inl 7020 df-inr 7021 df-case 7057 df-omni 7107 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |