Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sbthom Unicode version

Theorem sbthom 14777
Description: Schroeder-Bernstein is not possible even for  om. We know by exmidsbth 14775 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is  om? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
sbthom  |-  ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  -> EXMID )

Proof of Theorem sbthom
Dummy variables  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 p0ex 4189 . . . . . . . . . . 11  |-  { (/) }  e.  _V
21ssex 4141 . . . . . . . . . 10  |-  ( y 
C_  { (/) }  ->  y  e.  _V )
32adantl 277 . . . . . . . . 9  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  y  e.  _V )
4 omex 4593 . . . . . . . . 9  |-  om  e.  _V
5 djuex 7042 . . . . . . . . 9  |-  ( ( y  e.  _V  /\  om  e.  _V )  -> 
( y om )  e.  _V )
63, 4, 5sylancl 413 . . . . . . . 8  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
y om )  e.  _V )
7 simpll 527 . . . . . . . 8  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )
)
8 ssdomg 6778 . . . . . . . . . . . 12  |-  ( {
(/) }  e.  _V  ->  ( y  C_  { (/) }  ->  y  ~<_  { (/) } ) )
91, 8ax-mp 5 . . . . . . . . . . 11  |-  ( y 
C_  { (/) }  ->  y  ~<_  { (/) } )
10 domrefg 6767 . . . . . . . . . . . . . 14  |-  ( om  e.  _V  ->  om  ~<_  om )
114, 10ax-mp 5 . . . . . . . . . . . . 13  |-  om  ~<_  om
12 djudom 7092 . . . . . . . . . . . . 13  |-  ( ( y  ~<_  { (/) }  /\  om  ~<_  om )  ->  (
y om )  ~<_  ( {
(/) } om ) )
1311, 12mpan2 425 . . . . . . . . . . . 12  |-  ( y  ~<_  { (/) }  ->  (
y om )  ~<_  ( {
(/) } om ) )
14 df1o2 6430 . . . . . . . . . . . . 13  |-  1o  =  { (/) }
15 djueq1 7039 . . . . . . . . . . . . 13  |-  ( 1o  =  { (/) }  ->  ( 1o om )  =  ( { (/) } om ) )
1614, 15ax-mp 5 . . . . . . . . . . . 12  |-  ( 1o om )  =  ( {
(/) } om )
1713, 16breqtrrdi 4046 . . . . . . . . . . 11  |-  ( y  ~<_  { (/) }  ->  (
y om )  ~<_  ( 1o om ) )
18 1onn 6521 . . . . . . . . . . . . . 14  |-  1o  e.  om
19 endjusym 7095 . . . . . . . . . . . . . 14  |-  ( ( om  e.  _V  /\  1o  e.  om )  -> 
( om 1o )  ~~  ( 1o om ) )
204, 18, 19mp2an 426 . . . . . . . . . . . . 13  |-  ( om 1o )  ~~  ( 1o om )
21 omp1eom 7094 . . . . . . . . . . . . 13  |-  ( om 1o )  ~~  om
2220, 21entr3i 6788 . . . . . . . . . . . 12  |-  ( 1o om )  ~~  om
23 domentr 6791 . . . . . . . . . . . 12  |-  ( ( ( y om )  ~<_  ( 1o om )  /\  ( 1o om )  ~~  om )  ->  ( y om )  ~<_  om )
2422, 23mpan2 425 . . . . . . . . . . 11  |-  ( ( y om )  ~<_  ( 1o om )  ->  ( y om )  ~<_  om )
259, 17, 243syl 17 . . . . . . . . . 10  |-  ( y 
C_  { (/) }  ->  ( y om )  ~<_  om )
2625adantl 277 . . . . . . . . 9  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
y om )  ~<_  om )
27 djudomr 7219 . . . . . . . . . 10  |-  ( ( y  e.  _V  /\  om  e.  _V )  ->  om 
~<_  ( y om )
)
283, 4, 27sylancl 413 . . . . . . . . 9  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  om  ~<_  ( y om ) )
2926, 28jca 306 . . . . . . . 8  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
( y om )  ~<_  om  /\  om  ~<_  ( y om ) ) )
30 breq1 4007 . . . . . . . . . . 11  |-  ( x  =  ( y om )  ->  ( x  ~<_  om  <->  ( y om )  ~<_  om ) )
31 breq2 4008 . . . . . . . . . . 11  |-  ( x  =  ( y om )  ->  ( om  ~<_  x  <->  om  ~<_  ( y om ) ) )
3230, 31anbi12d 473 . . . . . . . . . 10  |-  ( x  =  ( y om )  ->  ( ( x  ~<_  om 
/\  om  ~<_  x )  <->  ( ( y om )  ~<_  om  /\  om  ~<_  ( y om ) ) ) )
33 breq1 4007 . . . . . . . . . 10  |-  ( x  =  ( y om )  ->  ( x  ~~  om  <->  ( y om )  ~~  om ) )
3432, 33imbi12d 234 . . . . . . . . 9  |-  ( x  =  ( y om )  ->  ( ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om ) 
<->  ( ( ( y om )  ~<_  om  /\  om  ~<_  ( y om ) )  ->  ( y om )  ~~  om ) ) )
3534spcgv 2825 . . . . . . . 8  |-  ( ( y om )  e.  _V  ->  ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  ->  (
( ( y om )  ~<_  om  /\  om  ~<_  ( y om ) )  ->  (
y om )  ~~  om ) ) )
366, 7, 29, 35syl3c 63 . . . . . . 7  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
y om )  ~~  om )
3736ensymd 6783 . . . . . 6  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  om  ~~  ( y om ) )
38 bren 6747 . . . . . 6  |-  ( om 
~~  ( y om )  <->  E. f  f : om -1-1-onto-> (
y om ) )
3937, 38sylib 122 . . . . 5  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  E. f 
f : om -1-1-onto-> ( y om )
)
40 simpllr 534 . . . . . 6  |-  ( ( ( ( A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  { (/) } )  /\  f : om -1-1-onto-> (
y om ) )  ->  om  e. Omni )
41 simplr 528 . . . . . 6  |-  ( ( ( ( A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  { (/) } )  /\  f : om -1-1-onto-> (
y om ) )  -> 
y  C_  { (/) } )
42 simpr 110 . . . . . 6  |-  ( ( ( ( A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  { (/) } )  /\  f : om -1-1-onto-> (
y om ) )  -> 
f : om -1-1-onto-> ( y om )
)
4340, 41, 42sbthomlem 14776 . . . . 5  |-  ( ( ( ( A. x
( ( x  ~<_  om 
/\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  { (/) } )  /\  f : om -1-1-onto-> (
y om ) )  -> 
( y  =  (/)  \/  y  =  { (/) } ) )
4439, 43exlimddv 1898 . . . 4  |-  ( ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  /\  y  C_  {
(/) } )  ->  (
y  =  (/)  \/  y  =  { (/) } ) )
4544ex 115 . . 3  |-  ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  ->  ( y  C_  { (/) }  ->  ( y  =  (/)  \/  y  =  { (/)
} ) ) )
4645alrimiv 1874 . 2  |-  ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  ->  A. y ( y 
C_  { (/) }  ->  ( y  =  (/)  \/  y  =  { (/) } ) ) )
47 exmid01 4199 . 2  |-  (EXMID  <->  A. y
( y  C_  { (/) }  ->  ( y  =  (/)  \/  y  =  { (/)
} ) ) )
4846, 47sylibr 134 1  |-  ( ( A. x ( ( x  ~<_  om  /\  om  ~<_  x )  ->  x  ~~  om )  /\  om  e. Omni )  -> EXMID )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708   A.wal 1351    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2738    C_ wss 3130   (/)c0 3423   {csn 3593   class class class wbr 4004  EXMIDwem 4195   omcom 4590   -1-1-onto->wf1o 5216   1oc1o 6410    ~~ cen 6738    ~<_ cdom 6739   ⊔ cdju 7036  Omnicomni 7132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-exmid 4196  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-1o 6417  df-2o 6418  df-er 6535  df-map 6650  df-en 6741  df-dom 6742  df-dju 7037  df-inl 7046  df-inr 7047  df-case 7083  df-omni 7133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator