ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcnv Unicode version

Theorem elcnv 4601
Description: Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elcnv  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
Distinct variable groups:    x, y, A   
x, R, y

Proof of Theorem elcnv
StepHypRef Expression
1 df-cnv 4436 . . 3  |-  `' R  =  { <. x ,  y
>.  |  y R x }
21eleq2i 2154 . 2  |-  ( A  e.  `' R  <->  A  e.  {
<. x ,  y >.  |  y R x } )
3 elopab 4076 . 2  |-  ( A  e.  { <. x ,  y >.  |  y R x }  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
42, 3bitri 182 1  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1289   E.wex 1426    e. wcel 1438   <.cop 3444   class class class wbr 3837   {copab 3890   `'ccnv 4427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-opab 3892  df-cnv 4436
This theorem is referenced by:  elcnv2  4602
  Copyright terms: Public domain W3C validator