ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcnv Unicode version

Theorem elcnv 4843
Description: Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elcnv  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
Distinct variable groups:    x, y, A   
x, R, y

Proof of Theorem elcnv
StepHypRef Expression
1 df-cnv 4671 . . 3  |-  `' R  =  { <. x ,  y
>.  |  y R x }
21eleq2i 2263 . 2  |-  ( A  e.  `' R  <->  A  e.  {
<. x ,  y >.  |  y R x } )
3 elopab 4292 . 2  |-  ( A  e.  { <. x ,  y >.  |  y R x }  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
42, 3bitri 184 1  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   <.cop 3625   class class class wbr 4033   {copab 4093   `'ccnv 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-cnv 4671
This theorem is referenced by:  elcnv2  4844
  Copyright terms: Public domain W3C validator