![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnveqd | Unicode version |
Description: Equality deduction for converse. (Contributed by NM, 6-Dec-2013.) |
Ref | Expression |
---|---|
cnveqd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cnveqd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | cnveq 4813 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-in 3147 df-ss 3154 df-br 4016 df-opab 4077 df-cnv 4646 |
This theorem is referenced by: cnvsng 5126 cores2 5153 suppssof1 6114 2ndval2 6171 2nd1st 6195 cnvf1olem 6239 brtpos2 6266 dftpos4 6278 tpostpos 6279 tposf12 6284 xpcomco 6840 infeq123d 7029 fsumcnv 11459 fprodcnv 11647 ennnfonelemf1 12433 xpsval 12790 grpinvcnv 12965 grplactcnv 12999 eqglact 13117 isunitd 13354 txswaphmeolem 14116 |
Copyright terms: Public domain | W3C validator |