| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnveqd | Unicode version | ||
| Description: Equality deduction for converse. (Contributed by NM, 6-Dec-2013.) |
| Ref | Expression |
|---|---|
| cnveqd.1 |
|
| Ref | Expression |
|---|---|
| cnveqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqd.1 |
. 2
| |
| 2 | cnveq 4896 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-br 4084 df-opab 4146 df-cnv 4727 |
| This theorem is referenced by: cnvsng 5214 cores2 5241 suppssof1 6236 2ndval2 6302 2nd1st 6326 cnvf1olem 6370 brtpos2 6397 dftpos4 6409 tpostpos 6410 tposf12 6415 xpcomco 6985 infeq123d 7183 fsumcnv 11948 fprodcnv 12136 ennnfonelemf1 12989 strslfv3 13078 xpsval 13385 grpinvcnv 13601 grplactcnv 13635 eqglact 13762 isunitd 14070 znval 14600 znle2 14616 txswaphmeolem 14994 |
| Copyright terms: Public domain | W3C validator |