| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnveqd | Unicode version | ||
| Description: Equality deduction for converse. (Contributed by NM, 6-Dec-2013.) |
| Ref | Expression |
|---|---|
| cnveqd.1 |
|
| Ref | Expression |
|---|---|
| cnveqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqd.1 |
. 2
| |
| 2 | cnveq 4870 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-in 3180 df-ss 3187 df-br 4060 df-opab 4122 df-cnv 4701 |
| This theorem is referenced by: cnvsng 5187 cores2 5214 suppssof1 6199 2ndval2 6265 2nd1st 6289 cnvf1olem 6333 brtpos2 6360 dftpos4 6372 tpostpos 6373 tposf12 6378 xpcomco 6946 infeq123d 7144 fsumcnv 11863 fprodcnv 12051 ennnfonelemf1 12904 strslfv3 12993 xpsval 13299 grpinvcnv 13515 grplactcnv 13549 eqglact 13676 isunitd 13983 znval 14513 znle2 14529 txswaphmeolem 14907 |
| Copyright terms: Public domain | W3C validator |