| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnveqd | Unicode version | ||
| Description: Equality deduction for converse. (Contributed by NM, 6-Dec-2013.) |
| Ref | Expression |
|---|---|
| cnveqd.1 |
|
| Ref | Expression |
|---|---|
| cnveqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqd.1 |
. 2
| |
| 2 | cnveq 4853 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-in 3172 df-ss 3179 df-br 4046 df-opab 4107 df-cnv 4684 |
| This theorem is referenced by: cnvsng 5169 cores2 5196 suppssof1 6178 2ndval2 6244 2nd1st 6268 cnvf1olem 6312 brtpos2 6339 dftpos4 6351 tpostpos 6352 tposf12 6357 xpcomco 6923 infeq123d 7120 fsumcnv 11781 fprodcnv 11969 ennnfonelemf1 12822 strslfv3 12911 xpsval 13217 grpinvcnv 13433 grplactcnv 13467 eqglact 13594 isunitd 13901 znval 14431 znle2 14447 txswaphmeolem 14825 |
| Copyright terms: Public domain | W3C validator |