| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnveqd | Unicode version | ||
| Description: Equality deduction for converse. (Contributed by NM, 6-Dec-2013.) |
| Ref | Expression |
|---|---|
| cnveqd.1 |
|
| Ref | Expression |
|---|---|
| cnveqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqd.1 |
. 2
| |
| 2 | cnveq 4841 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-br 4035 df-opab 4096 df-cnv 4672 |
| This theorem is referenced by: cnvsng 5156 cores2 5183 suppssof1 6157 2ndval2 6223 2nd1st 6247 cnvf1olem 6291 brtpos2 6318 dftpos4 6330 tpostpos 6331 tposf12 6336 xpcomco 6894 infeq123d 7091 fsumcnv 11619 fprodcnv 11807 ennnfonelemf1 12660 strslfv3 12749 xpsval 13054 grpinvcnv 13270 grplactcnv 13304 eqglact 13431 isunitd 13738 znval 14268 znle2 14284 txswaphmeolem 14640 |
| Copyright terms: Public domain | W3C validator |