| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elopab | Unicode version | ||
| Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| elopab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. 2
| |
| 2 | vex 2779 |
. . . . . 6
| |
| 3 | vex 2779 |
. . . . . 6
| |
| 4 | 2, 3 | opex 4291 |
. . . . 5
|
| 5 | eleq1 2270 |
. . . . 5
| |
| 6 | 4, 5 | mpbiri 168 |
. . . 4
|
| 7 | 6 | adantr 276 |
. . 3
|
| 8 | 7 | exlimivv 1921 |
. 2
|
| 9 | eqeq1 2214 |
. . . . 5
| |
| 10 | 9 | anbi1d 465 |
. . . 4
|
| 11 | 10 | 2exbidv 1892 |
. . 3
|
| 12 | df-opab 4122 |
. . 3
| |
| 13 | 11, 12 | elab2g 2927 |
. 2
|
| 14 | 1, 8, 13 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 |
| This theorem is referenced by: opelopabsbALT 4323 opelopabsb 4324 opelopabt 4326 opelopabga 4327 opabm 4345 iunopab 4346 epelg 4355 elxp 4710 elco 4862 elcnv 4873 dfmpt3 5418 0neqopab 6013 brabvv 6014 opabex3d 6229 opabex3 6230 |
| Copyright terms: Public domain | W3C validator |