ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elopab Unicode version

Theorem elopab 4180
Description: Membership in a class abstraction of pairs. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elopab  |-  ( A  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ph ) )
Distinct variable groups:    x, A    y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem elopab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 2697 . 2  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  A  e.  _V )
2 vex 2689 . . . . . 6  |-  x  e. 
_V
3 vex 2689 . . . . . 6  |-  y  e. 
_V
42, 3opex 4151 . . . . 5  |-  <. x ,  y >.  e.  _V
5 eleq1 2202 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  ( A  e. 
_V 
<-> 
<. x ,  y >.  e.  _V ) )
64, 5mpbiri 167 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  A  e.  _V )
76adantr 274 . . 3  |-  ( ( A  =  <. x ,  y >.  /\  ph )  ->  A  e.  _V )
87exlimivv 1868 . 2  |-  ( E. x E. y ( A  =  <. x ,  y >.  /\  ph )  ->  A  e.  _V )
9 eqeq1 2146 . . . . 5  |-  ( z  =  A  ->  (
z  =  <. x ,  y >.  <->  A  =  <. x ,  y >.
) )
109anbi1d 460 . . . 4  |-  ( z  =  A  ->  (
( z  =  <. x ,  y >.  /\  ph ) 
<->  ( A  =  <. x ,  y >.  /\  ph ) ) )
11102exbidv 1840 . . 3  |-  ( z  =  A  ->  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph ) 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ph ) ) )
12 df-opab 3990 . . 3  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
1311, 12elab2g 2831 . 2  |-  ( A  e.  _V  ->  ( A  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ph ) ) )
141, 8, 13pm5.21nii 693 1  |-  ( A  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   _Vcvv 2686   <.cop 3530   {copab 3988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-opab 3990
This theorem is referenced by:  opelopabsbALT  4181  opelopabsb  4182  opelopabt  4184  opelopabga  4185  opabm  4202  iunopab  4203  epelg  4212  elxp  4556  elco  4705  elcnv  4716  dfmpt3  5245  0neqopab  5816  brabvv  5817  opabex3d  6019  opabex3  6020
  Copyright terms: Public domain W3C validator