| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elopab | Unicode version | ||
| Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| elopab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | vex 2766 |
. . . . . 6
| |
| 3 | vex 2766 |
. . . . . 6
| |
| 4 | 2, 3 | opex 4262 |
. . . . 5
|
| 5 | eleq1 2259 |
. . . . 5
| |
| 6 | 4, 5 | mpbiri 168 |
. . . 4
|
| 7 | 6 | adantr 276 |
. . 3
|
| 8 | 7 | exlimivv 1911 |
. 2
|
| 9 | eqeq1 2203 |
. . . . 5
| |
| 10 | 9 | anbi1d 465 |
. . . 4
|
| 11 | 10 | 2exbidv 1882 |
. . 3
|
| 12 | df-opab 4095 |
. . 3
| |
| 13 | 11, 12 | elab2g 2911 |
. 2
|
| 14 | 1, 8, 13 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 |
| This theorem is referenced by: opelopabsbALT 4293 opelopabsb 4294 opelopabt 4296 opelopabga 4297 opabm 4315 iunopab 4316 epelg 4325 elxp 4680 elco 4832 elcnv 4843 dfmpt3 5380 0neqopab 5967 brabvv 5968 opabex3d 6178 opabex3 6179 |
| Copyright terms: Public domain | W3C validator |