ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elopab Unicode version

Theorem elopab 4260
Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elopab  |-  ( A  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ph ) )
Distinct variable groups:    x, A    y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem elopab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 2750 . 2  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  A  e.  _V )
2 vex 2742 . . . . . 6  |-  x  e. 
_V
3 vex 2742 . . . . . 6  |-  y  e. 
_V
42, 3opex 4231 . . . . 5  |-  <. x ,  y >.  e.  _V
5 eleq1 2240 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  ( A  e. 
_V 
<-> 
<. x ,  y >.  e.  _V ) )
64, 5mpbiri 168 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  A  e.  _V )
76adantr 276 . . 3  |-  ( ( A  =  <. x ,  y >.  /\  ph )  ->  A  e.  _V )
87exlimivv 1896 . 2  |-  ( E. x E. y ( A  =  <. x ,  y >.  /\  ph )  ->  A  e.  _V )
9 eqeq1 2184 . . . . 5  |-  ( z  =  A  ->  (
z  =  <. x ,  y >.  <->  A  =  <. x ,  y >.
) )
109anbi1d 465 . . . 4  |-  ( z  =  A  ->  (
( z  =  <. x ,  y >.  /\  ph ) 
<->  ( A  =  <. x ,  y >.  /\  ph ) ) )
11102exbidv 1868 . . 3  |-  ( z  =  A  ->  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph ) 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ph ) ) )
12 df-opab 4067 . . 3  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
1311, 12elab2g 2886 . 2  |-  ( A  e.  _V  ->  ( A  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ph ) ) )
141, 8, 13pm5.21nii 704 1  |-  ( A  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2739   <.cop 3597   {copab 4065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067
This theorem is referenced by:  opelopabsbALT  4261  opelopabsb  4262  opelopabt  4264  opelopabga  4265  opabm  4282  iunopab  4283  epelg  4292  elxp  4645  elco  4795  elcnv  4806  dfmpt3  5340  0neqopab  5922  brabvv  5923  opabex3d  6124  opabex3  6125
  Copyright terms: Public domain W3C validator