Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elopab | Unicode version |
Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
elopab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 | |
2 | vex 2733 | . . . . . 6 | |
3 | vex 2733 | . . . . . 6 | |
4 | 2, 3 | opex 4214 | . . . . 5 |
5 | eleq1 2233 | . . . . 5 | |
6 | 4, 5 | mpbiri 167 | . . . 4 |
7 | 6 | adantr 274 | . . 3 |
8 | 7 | exlimivv 1889 | . 2 |
9 | eqeq1 2177 | . . . . 5 | |
10 | 9 | anbi1d 462 | . . . 4 |
11 | 10 | 2exbidv 1861 | . . 3 |
12 | df-opab 4051 | . . 3 | |
13 | 11, 12 | elab2g 2877 | . 2 |
14 | 1, 8, 13 | pm5.21nii 699 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cvv 2730 cop 3586 copab 4049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 |
This theorem is referenced by: opelopabsbALT 4244 opelopabsb 4245 opelopabt 4247 opelopabga 4248 opabm 4265 iunopab 4266 epelg 4275 elxp 4628 elco 4777 elcnv 4788 dfmpt3 5320 0neqopab 5898 brabvv 5899 opabex3d 6100 opabex3 6101 |
Copyright terms: Public domain | W3C validator |