| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elopab | Unicode version | ||
| Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| elopab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. 2
| |
| 2 | vex 2775 |
. . . . . 6
| |
| 3 | vex 2775 |
. . . . . 6
| |
| 4 | 2, 3 | opex 4273 |
. . . . 5
|
| 5 | eleq1 2268 |
. . . . 5
| |
| 6 | 4, 5 | mpbiri 168 |
. . . 4
|
| 7 | 6 | adantr 276 |
. . 3
|
| 8 | 7 | exlimivv 1920 |
. 2
|
| 9 | eqeq1 2212 |
. . . . 5
| |
| 10 | 9 | anbi1d 465 |
. . . 4
|
| 11 | 10 | 2exbidv 1891 |
. . 3
|
| 12 | df-opab 4106 |
. . 3
| |
| 13 | 11, 12 | elab2g 2920 |
. 2
|
| 14 | 1, 8, 13 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 |
| This theorem is referenced by: opelopabsbALT 4305 opelopabsb 4306 opelopabt 4308 opelopabga 4309 opabm 4327 iunopab 4328 epelg 4337 elxp 4692 elco 4844 elcnv 4855 dfmpt3 5398 0neqopab 5990 brabvv 5991 opabex3d 6206 opabex3 6207 |
| Copyright terms: Public domain | W3C validator |