Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elopab | Unicode version |
Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
elopab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2723 | . 2 | |
2 | vex 2715 | . . . . . 6 | |
3 | vex 2715 | . . . . . 6 | |
4 | 2, 3 | opex 4190 | . . . . 5 |
5 | eleq1 2220 | . . . . 5 | |
6 | 4, 5 | mpbiri 167 | . . . 4 |
7 | 6 | adantr 274 | . . 3 |
8 | 7 | exlimivv 1876 | . 2 |
9 | eqeq1 2164 | . . . . 5 | |
10 | 9 | anbi1d 461 | . . . 4 |
11 | 10 | 2exbidv 1848 | . . 3 |
12 | df-opab 4027 | . . 3 | |
13 | 11, 12 | elab2g 2859 | . 2 |
14 | 1, 8, 13 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1335 wex 1472 wcel 2128 cvv 2712 cop 3563 copab 4025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-pow 4136 ax-pr 4170 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-opab 4027 |
This theorem is referenced by: opelopabsbALT 4220 opelopabsb 4221 opelopabt 4223 opelopabga 4224 opabm 4241 iunopab 4242 epelg 4251 elxp 4604 elco 4753 elcnv 4764 dfmpt3 5293 0neqopab 5867 brabvv 5868 opabex3d 6070 opabex3 6071 |
Copyright terms: Public domain | W3C validator |