ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elopab Unicode version

Theorem elopab 4346
Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elopab  |-  ( A  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ph ) )
Distinct variable groups:    x, A    y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem elopab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 2811 . 2  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  A  e.  _V )
2 vex 2802 . . . . . 6  |-  x  e. 
_V
3 vex 2802 . . . . . 6  |-  y  e. 
_V
42, 3opex 4315 . . . . 5  |-  <. x ,  y >.  e.  _V
5 eleq1 2292 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  ( A  e. 
_V 
<-> 
<. x ,  y >.  e.  _V ) )
64, 5mpbiri 168 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  A  e.  _V )
76adantr 276 . . 3  |-  ( ( A  =  <. x ,  y >.  /\  ph )  ->  A  e.  _V )
87exlimivv 1943 . 2  |-  ( E. x E. y ( A  =  <. x ,  y >.  /\  ph )  ->  A  e.  _V )
9 eqeq1 2236 . . . . 5  |-  ( z  =  A  ->  (
z  =  <. x ,  y >.  <->  A  =  <. x ,  y >.
) )
109anbi1d 465 . . . 4  |-  ( z  =  A  ->  (
( z  =  <. x ,  y >.  /\  ph ) 
<->  ( A  =  <. x ,  y >.  /\  ph ) ) )
11102exbidv 1914 . . 3  |-  ( z  =  A  ->  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph ) 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ph ) ) )
12 df-opab 4146 . . 3  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
1311, 12elab2g 2950 . 2  |-  ( A  e.  _V  ->  ( A  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ph ) ) )
141, 8, 13pm5.21nii 709 1  |-  ( A  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799   <.cop 3669   {copab 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146
This theorem is referenced by:  opelopabsbALT  4347  opelopabsb  4348  opelopabt  4350  opelopabga  4351  opabm  4369  iunopab  4370  epelg  4381  elxp  4736  elco  4888  elcnv  4899  dfmpt3  5446  0neqopab  6049  brabvv  6050  opabex3d  6266  opabex3  6267
  Copyright terms: Public domain W3C validator