ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcnv2 Unicode version

Theorem elcnv2 4765
Description: Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
elcnv2  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
Distinct variable groups:    x, y, A   
x, R, y

Proof of Theorem elcnv2
StepHypRef Expression
1 elcnv 4764 . 2  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
2 df-br 3967 . . . 4  |-  ( y R x  <->  <. y ,  x >.  e.  R
)
32anbi2i 453 . . 3  |-  ( ( A  =  <. x ,  y >.  /\  y R x )  <->  ( A  =  <. x ,  y
>.  /\  <. y ,  x >.  e.  R ) )
432exbii 1586 . 2  |-  ( E. x E. y ( A  =  <. x ,  y >.  /\  y R x )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
51, 4bitri 183 1  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1335   E.wex 1472    e. wcel 2128   <.cop 3563   class class class wbr 3966   `'ccnv 4586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3967  df-opab 4027  df-cnv 4595
This theorem is referenced by:  cnvuni  4773
  Copyright terms: Public domain W3C validator