ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcnv2 Unicode version

Theorem elcnv2 4874
Description: Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
elcnv2  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
Distinct variable groups:    x, y, A   
x, R, y

Proof of Theorem elcnv2
StepHypRef Expression
1 elcnv 4873 . 2  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
2 df-br 4060 . . . 4  |-  ( y R x  <->  <. y ,  x >.  e.  R
)
32anbi2i 457 . . 3  |-  ( ( A  =  <. x ,  y >.  /\  y R x )  <->  ( A  =  <. x ,  y
>.  /\  <. y ,  x >.  e.  R ) )
432exbii 1630 . 2  |-  ( E. x E. y ( A  =  <. x ,  y >.  /\  y R x )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
51, 4bitri 184 1  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   <.cop 3646   class class class wbr 4059   `'ccnv 4692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-cnv 4701
This theorem is referenced by:  cnvuni  4882
  Copyright terms: Public domain W3C validator