ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efgt1p2 Unicode version

Theorem efgt1p2 11838
Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
efgt1p2  |-  ( A  e.  RR+  ->  ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  < 
( exp `  A
) )

Proof of Theorem efgt1p2
Dummy variables  k  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn0 9256 . . . . . . 7  |-  1  e.  NN0
2 nn0uz 9627 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
31, 2eleqtri 2268 . . . . . 6  |-  1  e.  ( ZZ>= `  0 )
43a1i 9 . . . . 5  |-  ( A  e.  RR+  ->  1  e.  ( ZZ>= `  0 )
)
5 elnn0uz 9630 . . . . . . . . 9  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
65biimpri 133 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
76adantl 277 . . . . . . 7  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  k  e.  NN0 )
8 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  A  e.  RR+ )
9 eluzelz 9601 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  ZZ )
109adantl 277 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  k  e.  ZZ )
118, 10rpexpcld 10768 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( A ^ k )  e.  RR+ )
127faccld 10807 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( ! `  k )  e.  NN )
1312nnrpd 9760 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( ! `  k )  e.  RR+ )
1411, 13rpdivcld 9780 . . . . . . 7  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  RR+ )
15 oveq2 5926 . . . . . . . . 9  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
16 fveq2 5554 . . . . . . . . 9  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
1715, 16oveq12d 5936 . . . . . . . 8  |-  ( n  =  k  ->  (
( A ^ n
)  /  ( ! `
 n ) )  =  ( ( A ^ k )  / 
( ! `  k
) ) )
18 eqid 2193 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) )
1917, 18fvmptg 5633 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A ^
k )  /  ( ! `  k )
)  e.  RR+ )  ->  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
207, 14, 19syl2anc 411 . . . . . 6  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( (
n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
2120, 14eqeltrd 2270 . . . . 5  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( (
n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  RR+ )
22 rpaddcl 9743 . . . . . 6  |-  ( ( k  e.  RR+  /\  y  e.  RR+ )  ->  (
k  +  y )  e.  RR+ )
2322adantl 277 . . . . 5  |-  ( ( A  e.  RR+  /\  (
k  e.  RR+  /\  y  e.  RR+ ) )  -> 
( k  +  y )  e.  RR+ )
244, 21, 23seq3p1 10536 . . . 4  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  ( 1  +  1 ) )  =  ( (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  1 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 ( 1  +  1 ) ) ) )
25 df-2 9041 . . . . 5  |-  2  =  ( 1  +  1 )
2625fveq2i 5557 . . . 4  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
2 )  =  (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 ( 1  +  1 ) )
2725fveq2i 5557 . . . . 5  |-  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 2 )  =  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  ( 1  +  1 ) )
2827oveq2i 5929 . . . 4  |-  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 1 )  +  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
2 ) )  =  ( (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  1 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 ( 1  +  1 ) ) )
2924, 26, 283eqtr4g 2251 . . 3  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
2 )  =  ( (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  1 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 2 ) ) )
30 0nn0 9255 . . . . . . . . 9  |-  0  e.  NN0
3130, 2eleqtri 2268 . . . . . . . 8  |-  0  e.  ( ZZ>= `  0 )
3231a1i 9 . . . . . . 7  |-  ( A  e.  RR+  ->  0  e.  ( ZZ>= `  0 )
)
3332, 21, 23seq3p1 10536 . . . . . 6  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  ( 0  +  1 ) )  =  ( (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  0 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 ( 0  +  1 ) ) ) )
34 1e0p1 9489 . . . . . . 7  |-  1  =  ( 0  +  1 )
3534fveq2i 5557 . . . . . 6  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
1 )  =  (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 ( 0  +  1 ) )
3634fveq2i 5557 . . . . . . 7  |-  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 1 )  =  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  ( 0  +  1 ) )
3736oveq2i 5929 . . . . . 6  |-  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 0 )  +  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
1 ) )  =  ( (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  0 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 ( 0  +  1 ) ) )
3833, 35, 373eqtr4g 2251 . . . . 5  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
1 )  =  ( (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  0 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 1 ) ) )
39 0zd 9329 . . . . . . . 8  |-  ( A  e.  RR+  ->  0  e.  ZZ )
4039, 21, 23seq3-1 10533 . . . . . . 7  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
0 )  =  ( ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  0
) )
41 rpcn 9728 . . . . . . . . 9  |-  ( A  e.  RR+  ->  A  e.  CC )
4218eftvalcn 11800 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
0 )  =  ( ( A ^ 0 )  /  ( ! `
 0 ) ) )
4330, 42mpan2 425 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  0
)  =  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )
4441, 43syl 14 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 0 )  =  ( ( A ^
0 )  /  ( ! `  0 )
) )
45 eft0val 11836 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( A ^ 0 )  /  ( ! `
 0 ) )  =  1 )
4641, 45syl 14 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( A ^ 0 )  /  ( ! ` 
0 ) )  =  1 )
4744, 46eqtrd 2226 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 0 )  =  1 )
4840, 47eqtrd 2226 . . . . . 6  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
0 )  =  1 )
4918eftvalcn 11800 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  1  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
1 )  =  ( ( A ^ 1 )  /  ( ! `
 1 ) ) )
501, 49mpan2 425 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  1
)  =  ( ( A ^ 1 )  /  ( ! ` 
1 ) ) )
51 fac1 10800 . . . . . . . . . 10  |-  ( ! `
 1 )  =  1
5251oveq2i 5929 . . . . . . . . 9  |-  ( ( A ^ 1 )  /  ( ! ` 
1 ) )  =  ( ( A ^
1 )  /  1
)
53 exp1 10616 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
5453oveq1d 5933 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  1 )  =  ( A  / 
1 ) )
55 div1 8722 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A  /  1 )  =  A )
5654, 55eqtrd 2226 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  1 )  =  A )
5752, 56eqtrid 2238 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  ( ! `
 1 ) )  =  A )
5850, 57eqtrd 2226 . . . . . . 7  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  1
)  =  A )
5941, 58syl 14 . . . . . 6  |-  ( A  e.  RR+  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 1 )  =  A )
6048, 59oveq12d 5936 . . . . 5  |-  ( A  e.  RR+  ->  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 0 )  +  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
1 ) )  =  ( 1  +  A
) )
6138, 60eqtrd 2226 . . . 4  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
1 )  =  ( 1  +  A ) )
62 2nn0 9257 . . . . . . 7  |-  2  e.  NN0
6318eftvalcn 11800 . . . . . . 7  |-  ( ( A  e.  CC  /\  2  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
2 )  =  ( ( A ^ 2 )  /  ( ! `
 2 ) ) )
6462, 63mpan2 425 . . . . . 6  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  2
)  =  ( ( A ^ 2 )  /  ( ! ` 
2 ) ) )
65 fac2 10802 . . . . . . 7  |-  ( ! `
 2 )  =  2
6665oveq2i 5929 . . . . . 6  |-  ( ( A ^ 2 )  /  ( ! ` 
2 ) )  =  ( ( A ^
2 )  /  2
)
6764, 66eqtrdi 2242 . . . . 5  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  2
)  =  ( ( A ^ 2 )  /  2 ) )
6841, 67syl 14 . . . 4  |-  ( A  e.  RR+  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 2 )  =  ( ( A ^
2 )  /  2
) )
6961, 68oveq12d 5936 . . 3  |-  ( A  e.  RR+  ->  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 1 )  +  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
2 ) )  =  ( ( 1  +  A )  +  ( ( A ^ 2 )  /  2 ) ) )
7029, 69eqtrd 2226 . 2  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
2 )  =  ( ( 1  +  A
)  +  ( ( A ^ 2 )  /  2 ) ) )
71 id 19 . . 3  |-  ( A  e.  RR+  ->  A  e.  RR+ )
7262a1i 9 . . 3  |-  ( A  e.  RR+  ->  2  e. 
NN0 )
7318, 71, 72effsumlt 11835 . 2  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
2 )  <  ( exp `  A ) )
7470, 73eqbrtrrd 4053 1  |-  ( A  e.  RR+  ->  ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  < 
( exp `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   class class class wbr 4029    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875    < clt 8054    / cdiv 8691   2c2 9033   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   RR+crp 9719    seqcseq 10518   ^cexp 10609   !cfa 10796   expce 11785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator