ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efgt1p2 Unicode version

Theorem efgt1p2 11862
Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
efgt1p2  |-  ( A  e.  RR+  ->  ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  < 
( exp `  A
) )

Proof of Theorem efgt1p2
Dummy variables  k  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn0 9267 . . . . . . 7  |-  1  e.  NN0
2 nn0uz 9638 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
31, 2eleqtri 2271 . . . . . 6  |-  1  e.  ( ZZ>= `  0 )
43a1i 9 . . . . 5  |-  ( A  e.  RR+  ->  1  e.  ( ZZ>= `  0 )
)
5 elnn0uz 9641 . . . . . . . . 9  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
65biimpri 133 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
76adantl 277 . . . . . . 7  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  k  e.  NN0 )
8 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  A  e.  RR+ )
9 eluzelz 9612 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  ZZ )
109adantl 277 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  k  e.  ZZ )
118, 10rpexpcld 10791 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( A ^ k )  e.  RR+ )
127faccld 10830 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( ! `  k )  e.  NN )
1312nnrpd 9771 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( ! `  k )  e.  RR+ )
1411, 13rpdivcld 9791 . . . . . . 7  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  RR+ )
15 oveq2 5931 . . . . . . . . 9  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
16 fveq2 5559 . . . . . . . . 9  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
1715, 16oveq12d 5941 . . . . . . . 8  |-  ( n  =  k  ->  (
( A ^ n
)  /  ( ! `
 n ) )  =  ( ( A ^ k )  / 
( ! `  k
) ) )
18 eqid 2196 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) )
1917, 18fvmptg 5638 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A ^
k )  /  ( ! `  k )
)  e.  RR+ )  ->  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
207, 14, 19syl2anc 411 . . . . . 6  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( (
n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
2120, 14eqeltrd 2273 . . . . 5  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( (
n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  RR+ )
22 rpaddcl 9754 . . . . . 6  |-  ( ( k  e.  RR+  /\  y  e.  RR+ )  ->  (
k  +  y )  e.  RR+ )
2322adantl 277 . . . . 5  |-  ( ( A  e.  RR+  /\  (
k  e.  RR+  /\  y  e.  RR+ ) )  -> 
( k  +  y )  e.  RR+ )
244, 21, 23seq3p1 10559 . . . 4  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  ( 1  +  1 ) )  =  ( (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  1 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 ( 1  +  1 ) ) ) )
25 df-2 9051 . . . . 5  |-  2  =  ( 1  +  1 )
2625fveq2i 5562 . . . 4  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
2 )  =  (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 ( 1  +  1 ) )
2725fveq2i 5562 . . . . 5  |-  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 2 )  =  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  ( 1  +  1 ) )
2827oveq2i 5934 . . . 4  |-  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 1 )  +  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
2 ) )  =  ( (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  1 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 ( 1  +  1 ) ) )
2924, 26, 283eqtr4g 2254 . . 3  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
2 )  =  ( (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  1 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 2 ) ) )
30 0nn0 9266 . . . . . . . . 9  |-  0  e.  NN0
3130, 2eleqtri 2271 . . . . . . . 8  |-  0  e.  ( ZZ>= `  0 )
3231a1i 9 . . . . . . 7  |-  ( A  e.  RR+  ->  0  e.  ( ZZ>= `  0 )
)
3332, 21, 23seq3p1 10559 . . . . . 6  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  ( 0  +  1 ) )  =  ( (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  0 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 ( 0  +  1 ) ) ) )
34 1e0p1 9500 . . . . . . 7  |-  1  =  ( 0  +  1 )
3534fveq2i 5562 . . . . . 6  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
1 )  =  (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 ( 0  +  1 ) )
3634fveq2i 5562 . . . . . . 7  |-  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 1 )  =  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  ( 0  +  1 ) )
3736oveq2i 5934 . . . . . 6  |-  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 0 )  +  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
1 ) )  =  ( (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  0 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 ( 0  +  1 ) ) )
3833, 35, 373eqtr4g 2254 . . . . 5  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
1 )  =  ( (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  0 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 1 ) ) )
39 0zd 9340 . . . . . . . 8  |-  ( A  e.  RR+  ->  0  e.  ZZ )
4039, 21, 23seq3-1 10556 . . . . . . 7  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
0 )  =  ( ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  0
) )
41 rpcn 9739 . . . . . . . . 9  |-  ( A  e.  RR+  ->  A  e.  CC )
4218eftvalcn 11824 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
0 )  =  ( ( A ^ 0 )  /  ( ! `
 0 ) ) )
4330, 42mpan2 425 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  0
)  =  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )
4441, 43syl 14 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 0 )  =  ( ( A ^
0 )  /  ( ! `  0 )
) )
45 eft0val 11860 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( A ^ 0 )  /  ( ! `
 0 ) )  =  1 )
4641, 45syl 14 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( A ^ 0 )  /  ( ! ` 
0 ) )  =  1 )
4744, 46eqtrd 2229 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 0 )  =  1 )
4840, 47eqtrd 2229 . . . . . 6  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
0 )  =  1 )
4918eftvalcn 11824 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  1  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
1 )  =  ( ( A ^ 1 )  /  ( ! `
 1 ) ) )
501, 49mpan2 425 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  1
)  =  ( ( A ^ 1 )  /  ( ! ` 
1 ) ) )
51 fac1 10823 . . . . . . . . . 10  |-  ( ! `
 1 )  =  1
5251oveq2i 5934 . . . . . . . . 9  |-  ( ( A ^ 1 )  /  ( ! ` 
1 ) )  =  ( ( A ^
1 )  /  1
)
53 exp1 10639 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
5453oveq1d 5938 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  1 )  =  ( A  / 
1 ) )
55 div1 8732 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A  /  1 )  =  A )
5654, 55eqtrd 2229 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  1 )  =  A )
5752, 56eqtrid 2241 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  ( ! `
 1 ) )  =  A )
5850, 57eqtrd 2229 . . . . . . 7  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  1
)  =  A )
5941, 58syl 14 . . . . . 6  |-  ( A  e.  RR+  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 1 )  =  A )
6048, 59oveq12d 5941 . . . . 5  |-  ( A  e.  RR+  ->  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 0 )  +  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
1 ) )  =  ( 1  +  A
) )
6138, 60eqtrd 2229 . . . 4  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
1 )  =  ( 1  +  A ) )
62 2nn0 9268 . . . . . . 7  |-  2  e.  NN0
6318eftvalcn 11824 . . . . . . 7  |-  ( ( A  e.  CC  /\  2  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
2 )  =  ( ( A ^ 2 )  /  ( ! `
 2 ) ) )
6462, 63mpan2 425 . . . . . 6  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  2
)  =  ( ( A ^ 2 )  /  ( ! ` 
2 ) ) )
65 fac2 10825 . . . . . . 7  |-  ( ! `
 2 )  =  2
6665oveq2i 5934 . . . . . 6  |-  ( ( A ^ 2 )  /  ( ! ` 
2 ) )  =  ( ( A ^
2 )  /  2
)
6764, 66eqtrdi 2245 . . . . 5  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  2
)  =  ( ( A ^ 2 )  /  2 ) )
6841, 67syl 14 . . . 4  |-  ( A  e.  RR+  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 2 )  =  ( ( A ^
2 )  /  2
) )
6961, 68oveq12d 5941 . . 3  |-  ( A  e.  RR+  ->  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 1 )  +  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
2 ) )  =  ( ( 1  +  A )  +  ( ( A ^ 2 )  /  2 ) ) )
7029, 69eqtrd 2229 . 2  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
2 )  =  ( ( 1  +  A
)  +  ( ( A ^ 2 )  /  2 ) ) )
71 id 19 . . 3  |-  ( A  e.  RR+  ->  A  e.  RR+ )
7262a1i 9 . . 3  |-  ( A  e.  RR+  ->  2  e. 
NN0 )
7318, 71, 72effsumlt 11859 . 2  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
2 )  <  ( exp `  A ) )
7470, 73eqbrtrrd 4058 1  |-  ( A  e.  RR+  ->  ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  < 
( exp `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4034    |-> cmpt 4095   ` cfv 5259  (class class class)co 5923   CCcc 7879   0cc0 7881   1c1 7882    + caddc 7884    < clt 8063    / cdiv 8701   2c2 9043   NN0cn0 9251   ZZcz 9328   ZZ>=cuz 9603   RR+crp 9730    seqcseq 10541   ^cexp 10632   !cfa 10819   expce 11809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-irdg 6429  df-frec 6450  df-1o 6475  df-oadd 6479  df-er 6593  df-en 6801  df-dom 6802  df-fin 6803  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-ico 9971  df-fz 10086  df-fzo 10220  df-seqfrec 10542  df-exp 10633  df-fac 10820  df-ihash 10870  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-clim 11446  df-sumdc 11521  df-ef 11815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator