ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efgt1p2 Unicode version

Theorem efgt1p2 11705
Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
efgt1p2  |-  ( A  e.  RR+  ->  ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  < 
( exp `  A
) )

Proof of Theorem efgt1p2
Dummy variables  k  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn0 9194 . . . . . . 7  |-  1  e.  NN0
2 nn0uz 9564 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
31, 2eleqtri 2252 . . . . . 6  |-  1  e.  ( ZZ>= `  0 )
43a1i 9 . . . . 5  |-  ( A  e.  RR+  ->  1  e.  ( ZZ>= `  0 )
)
5 elnn0uz 9567 . . . . . . . . 9  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
65biimpri 133 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
76adantl 277 . . . . . . 7  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  k  e.  NN0 )
8 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  A  e.  RR+ )
9 eluzelz 9539 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  ZZ )
109adantl 277 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  k  e.  ZZ )
118, 10rpexpcld 10680 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( A ^ k )  e.  RR+ )
127faccld 10718 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( ! `  k )  e.  NN )
1312nnrpd 9696 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( ! `  k )  e.  RR+ )
1411, 13rpdivcld 9716 . . . . . . 7  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  RR+ )
15 oveq2 5885 . . . . . . . . 9  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
16 fveq2 5517 . . . . . . . . 9  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
1715, 16oveq12d 5895 . . . . . . . 8  |-  ( n  =  k  ->  (
( A ^ n
)  /  ( ! `
 n ) )  =  ( ( A ^ k )  / 
( ! `  k
) ) )
18 eqid 2177 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) )
1917, 18fvmptg 5594 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A ^
k )  /  ( ! `  k )
)  e.  RR+ )  ->  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
207, 14, 19syl2anc 411 . . . . . 6  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( (
n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
2120, 14eqeltrd 2254 . . . . 5  |-  ( ( A  e.  RR+  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( (
n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  RR+ )
22 rpaddcl 9679 . . . . . 6  |-  ( ( k  e.  RR+  /\  y  e.  RR+ )  ->  (
k  +  y )  e.  RR+ )
2322adantl 277 . . . . 5  |-  ( ( A  e.  RR+  /\  (
k  e.  RR+  /\  y  e.  RR+ ) )  -> 
( k  +  y )  e.  RR+ )
244, 21, 23seq3p1 10464 . . . 4  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  ( 1  +  1 ) )  =  ( (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  1 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 ( 1  +  1 ) ) ) )
25 df-2 8980 . . . . 5  |-  2  =  ( 1  +  1 )
2625fveq2i 5520 . . . 4  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
2 )  =  (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 ( 1  +  1 ) )
2725fveq2i 5520 . . . . 5  |-  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 2 )  =  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  ( 1  +  1 ) )
2827oveq2i 5888 . . . 4  |-  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 1 )  +  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
2 ) )  =  ( (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  1 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 ( 1  +  1 ) ) )
2924, 26, 283eqtr4g 2235 . . 3  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
2 )  =  ( (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  1 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 2 ) ) )
30 0nn0 9193 . . . . . . . . 9  |-  0  e.  NN0
3130, 2eleqtri 2252 . . . . . . . 8  |-  0  e.  ( ZZ>= `  0 )
3231a1i 9 . . . . . . 7  |-  ( A  e.  RR+  ->  0  e.  ( ZZ>= `  0 )
)
3332, 21, 23seq3p1 10464 . . . . . 6  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  ( 0  +  1 ) )  =  ( (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  0 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 ( 0  +  1 ) ) ) )
34 1e0p1 9427 . . . . . . 7  |-  1  =  ( 0  +  1 )
3534fveq2i 5520 . . . . . 6  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
1 )  =  (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 ( 0  +  1 ) )
3634fveq2i 5520 . . . . . . 7  |-  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 1 )  =  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  ( 0  +  1 ) )
3736oveq2i 5888 . . . . . 6  |-  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 0 )  +  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
1 ) )  =  ( (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  0 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 ( 0  +  1 ) ) )
3833, 35, 373eqtr4g 2235 . . . . 5  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
1 )  =  ( (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  0 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 1 ) ) )
39 0zd 9267 . . . . . . . 8  |-  ( A  e.  RR+  ->  0  e.  ZZ )
4039, 21, 23seq3-1 10462 . . . . . . 7  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
0 )  =  ( ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  0
) )
41 rpcn 9664 . . . . . . . . 9  |-  ( A  e.  RR+  ->  A  e.  CC )
4218eftvalcn 11667 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
0 )  =  ( ( A ^ 0 )  /  ( ! `
 0 ) ) )
4330, 42mpan2 425 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  0
)  =  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )
4441, 43syl 14 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 0 )  =  ( ( A ^
0 )  /  ( ! `  0 )
) )
45 eft0val 11703 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( A ^ 0 )  /  ( ! `
 0 ) )  =  1 )
4641, 45syl 14 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( A ^ 0 )  /  ( ! ` 
0 ) )  =  1 )
4744, 46eqtrd 2210 . . . . . . 7  |-  ( A  e.  RR+  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 0 )  =  1 )
4840, 47eqtrd 2210 . . . . . 6  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
0 )  =  1 )
4918eftvalcn 11667 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  1  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
1 )  =  ( ( A ^ 1 )  /  ( ! `
 1 ) ) )
501, 49mpan2 425 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  1
)  =  ( ( A ^ 1 )  /  ( ! ` 
1 ) ) )
51 fac1 10711 . . . . . . . . . 10  |-  ( ! `
 1 )  =  1
5251oveq2i 5888 . . . . . . . . 9  |-  ( ( A ^ 1 )  /  ( ! ` 
1 ) )  =  ( ( A ^
1 )  /  1
)
53 exp1 10528 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
5453oveq1d 5892 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  1 )  =  ( A  / 
1 ) )
55 div1 8662 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A  /  1 )  =  A )
5654, 55eqtrd 2210 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  1 )  =  A )
5752, 56eqtrid 2222 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  ( ! `
 1 ) )  =  A )
5850, 57eqtrd 2210 . . . . . . 7  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  1
)  =  A )
5941, 58syl 14 . . . . . 6  |-  ( A  e.  RR+  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 1 )  =  A )
6048, 59oveq12d 5895 . . . . 5  |-  ( A  e.  RR+  ->  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 0 )  +  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
1 ) )  =  ( 1  +  A
) )
6138, 60eqtrd 2210 . . . 4  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
1 )  =  ( 1  +  A ) )
62 2nn0 9195 . . . . . . 7  |-  2  e.  NN0
6318eftvalcn 11667 . . . . . . 7  |-  ( ( A  e.  CC  /\  2  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
2 )  =  ( ( A ^ 2 )  /  ( ! `
 2 ) ) )
6462, 63mpan2 425 . . . . . 6  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  2
)  =  ( ( A ^ 2 )  /  ( ! ` 
2 ) ) )
65 fac2 10713 . . . . . . 7  |-  ( ! `
 2 )  =  2
6665oveq2i 5888 . . . . . 6  |-  ( ( A ^ 2 )  /  ( ! ` 
2 ) )  =  ( ( A ^
2 )  /  2
)
6764, 66eqtrdi 2226 . . . . 5  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  2
)  =  ( ( A ^ 2 )  /  2 ) )
6841, 67syl 14 . . . 4  |-  ( A  e.  RR+  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 2 )  =  ( ( A ^
2 )  /  2
) )
6961, 68oveq12d 5895 . . 3  |-  ( A  e.  RR+  ->  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 1 )  +  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
2 ) )  =  ( ( 1  +  A )  +  ( ( A ^ 2 )  /  2 ) ) )
7029, 69eqtrd 2210 . 2  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
2 )  =  ( ( 1  +  A
)  +  ( ( A ^ 2 )  /  2 ) ) )
71 id 19 . . 3  |-  ( A  e.  RR+  ->  A  e.  RR+ )
7262a1i 9 . . 3  |-  ( A  e.  RR+  ->  2  e. 
NN0 )
7318, 71, 72effsumlt 11702 . 2  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
2 )  <  ( exp `  A ) )
7470, 73eqbrtrrd 4029 1  |-  ( A  e.  RR+  ->  ( ( 1  +  A )  +  ( ( A ^ 2 )  / 
2 ) )  < 
( exp `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4005    |-> cmpt 4066   ` cfv 5218  (class class class)co 5877   CCcc 7811   0cc0 7813   1c1 7814    + caddc 7816    < clt 7994    / cdiv 8631   2c2 8972   NN0cn0 9178   ZZcz 9255   ZZ>=cuz 9530   RR+crp 9655    seqcseq 10447   ^cexp 10521   !cfa 10707   expce 11652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-ico 9896  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-fac 10708  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364  df-ef 11658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator