ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrehmeocntop Unicode version

Theorem cnrehmeocntop 15284
Description: The canonical bijection from  ( RR  X.  RR ) to  CC described in cnref1o 9846 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if  ( RR  X.  RR ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cnrehmeo.1  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
cnrehmeo.2  |-  J  =  ( topGen `  ran  (,) )
cnrehmeocntop.3  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
cnrehmeocntop  |-  F  e.  ( ( J  tX  J ) Homeo K )
Distinct variable group:    x, y, K
Allowed substitution hints:    F( x, y)    J( x, y)

Proof of Theorem cnrehmeocntop
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cnrehmeo.1 . . . 4  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
2 cnrehmeo.2 . . . . . . 7  |-  J  =  ( topGen `  ran  (,) )
3 retopon 15200 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
42, 3eqeltri 2302 . . . . . 6  |-  J  e.  (TopOn `  RR )
54a1i 9 . . . . 5  |-  ( T. 
->  J  e.  (TopOn `  RR ) )
6 cnrehmeocntop.3 . . . . . . . 8  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
76cntoptop 15207 . . . . . . 7  |-  K  e. 
Top
8 cnrest2r 14911 . . . . . . 7  |-  ( K  e.  Top  ->  (
( J  tX  J
)  Cn  ( Kt  RR ) )  C_  (
( J  tX  J
)  Cn  K ) )
97, 8mp1i 10 . . . . . 6  |-  ( T. 
->  ( ( J  tX  J )  Cn  ( Kt  RR ) )  C_  (
( J  tX  J
)  Cn  K ) )
105, 5cnmpt1st 14962 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  x )  e.  ( ( J  tX  J
)  Cn  J ) )
116tgioo2cntop 15231 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( Kt  RR )
122, 11eqtri 2250 . . . . . . . 8  |-  J  =  ( Kt  RR )
1312oveq2i 6012 . . . . . . 7  |-  ( ( J  tX  J )  Cn  J )  =  ( ( J  tX  J )  Cn  ( Kt  RR ) )
1410, 13eleqtrdi 2322 . . . . . 6  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  x )  e.  ( ( J  tX  J
)  Cn  ( Kt  RR ) ) )
159, 14sseldd 3225 . . . . 5  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  x )  e.  ( ( J  tX  J
)  Cn  K ) )
166cntoptopon 15206 . . . . . . . 8  |-  K  e.  (TopOn `  CC )
1716a1i 9 . . . . . . 7  |-  ( T. 
->  K  e.  (TopOn `  CC ) )
18 ax-icn 8094 . . . . . . . 8  |-  _i  e.  CC
1918a1i 9 . . . . . . 7  |-  ( T. 
->  _i  e.  CC )
205, 5, 17, 19cnmpt2c 14964 . . . . . 6  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  _i )  e.  (
( J  tX  J
)  Cn  K ) )
215, 5cnmpt2nd 14963 . . . . . . . 8  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  y )  e.  ( ( J  tX  J
)  Cn  J ) )
2221, 13eleqtrdi 2322 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  y )  e.  ( ( J  tX  J
)  Cn  ( Kt  RR ) ) )
239, 22sseldd 3225 . . . . . 6  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  y )  e.  ( ( J  tX  J
)  Cn  K ) )
246mulcncntop 15238 . . . . . . 7  |-  x.  e.  ( ( K  tX  K )  Cn  K
)
2524a1i 9 . . . . . 6  |-  ( T. 
->  x.  e.  ( ( K  tX  K )  Cn  K ) )
265, 5, 20, 23, 25cnmpt22f 14969 . . . . 5  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  ( _i  x.  y
) )  e.  ( ( J  tX  J
)  Cn  K ) )
276addcncntop 15236 . . . . . 6  |-  +  e.  ( ( K  tX  K )  Cn  K
)
2827a1i 9 . . . . 5  |-  ( T. 
->  +  e.  ( ( K  tX  K )  Cn  K ) )
295, 5, 15, 26, 28cnmpt22f 14969 . . . 4  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )  e.  ( ( J  tX  J
)  Cn  K ) )
301, 29eqeltrid 2316 . . 3  |-  ( T. 
->  F  e.  (
( J  tX  J
)  Cn  K ) )
311cnrecnv 11421 . . . 4  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
32 ref 11366 . . . . . . . 8  |-  Re : CC
--> RR
3332a1i 9 . . . . . . 7  |-  ( T. 
->  Re : CC --> RR )
3433feqmptd 5687 . . . . . 6  |-  ( T. 
->  Re  =  ( z  e.  CC  |->  ( Re
`  z ) ) )
35 recncf 15260 . . . . . . 7  |-  Re  e.  ( CC -cn-> RR )
36 ssid 3244 . . . . . . . 8  |-  CC  C_  CC
37 ax-resscn 8091 . . . . . . . 8  |-  RR  C_  CC
3816toponrestid 14695 . . . . . . . . 9  |-  K  =  ( Kt  CC )
396, 38, 12cncfcncntop 15267 . . . . . . . 8  |-  ( ( CC  C_  CC  /\  RR  C_  CC )  ->  ( CC -cn-> RR )  =  ( K  Cn  J ) )
4036, 37, 39mp2an 426 . . . . . . 7  |-  ( CC
-cn-> RR )  =  ( K  Cn  J )
4135, 40eleqtri 2304 . . . . . 6  |-  Re  e.  ( K  Cn  J
)
4234, 41eqeltrrdi 2321 . . . . 5  |-  ( T. 
->  ( z  e.  CC  |->  ( Re `  z ) )  e.  ( K  Cn  J ) )
43 imf 11367 . . . . . . . 8  |-  Im : CC
--> RR
4443a1i 9 . . . . . . 7  |-  ( T. 
->  Im : CC --> RR )
4544feqmptd 5687 . . . . . 6  |-  ( T. 
->  Im  =  ( z  e.  CC  |->  ( Im
`  z ) ) )
46 imcncf 15261 . . . . . . 7  |-  Im  e.  ( CC -cn-> RR )
4746, 40eleqtri 2304 . . . . . 6  |-  Im  e.  ( K  Cn  J
)
4845, 47eqeltrrdi 2321 . . . . 5  |-  ( T. 
->  ( z  e.  CC  |->  ( Im `  z ) )  e.  ( K  Cn  J ) )
4917, 42, 48cnmpt1t 14959 . . . 4  |-  ( T. 
->  ( z  e.  CC  |->  <. ( Re `  z
) ,  ( Im
`  z ) >.
)  e.  ( K  Cn  ( J  tX  J ) ) )
5031, 49eqeltrid 2316 . . 3  |-  ( T. 
->  `' F  e.  ( K  Cn  ( J  tX  J ) ) )
51 ishmeo 14978 . . 3  |-  ( F  e.  ( ( J 
tX  J ) Homeo K )  <->  ( F  e.  ( ( J  tX  J )  Cn  K
)  /\  `' F  e.  ( K  Cn  ( J  tX  J ) ) ) )
5230, 50, 51sylanbrc 417 . 2  |-  ( T. 
->  F  e.  (
( J  tX  J
) Homeo K ) )
5352mptru 1404 1  |-  F  e.  ( ( J  tX  J ) Homeo K )
Colors of variables: wff set class
Syntax hints:    = wceq 1395   T. wtru 1396    e. wcel 2200    C_ wss 3197   <.cop 3669    |-> cmpt 4145   `'ccnv 4718   ran crn 4720    o. ccom 4723   -->wf 5314   ` cfv 5318  (class class class)co 6001    e. cmpo 6003   CCcc 7997   RRcr 7998   _ici 8001    + caddc 8002    x. cmul 8004    - cmin 8317   (,)cioo 10084   Recre 11351   Imcim 11352   abscabs 11508   ↾t crest 13272   topGenctg 13287   MetOpencmopn 14505   Topctop 14671  TopOnctopon 14684    Cn ccn 14859    tX ctx 14926   Homeochmeo 14974   -cn->ccncf 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-map 6797  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-ioo 10088  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-cn 14862  df-cnp 14863  df-tx 14927  df-hmeo 14975  df-cncf 15245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator