ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrehmeocntop Unicode version

Theorem cnrehmeocntop 13233
Description: The canonical bijection from  ( RR  X.  RR ) to  CC described in cnref1o 9588 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if  ( RR  X.  RR ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cnrehmeo.1  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
cnrehmeo.2  |-  J  =  ( topGen `  ran  (,) )
cnrehmeocntop.3  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
cnrehmeocntop  |-  F  e.  ( ( J  tX  J ) Homeo K )
Distinct variable group:    x, y, K
Allowed substitution hints:    F( x, y)    J( x, y)

Proof of Theorem cnrehmeocntop
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cnrehmeo.1 . . . 4  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
2 cnrehmeo.2 . . . . . . 7  |-  J  =  ( topGen `  ran  (,) )
3 retopon 13166 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
42, 3eqeltri 2239 . . . . . 6  |-  J  e.  (TopOn `  RR )
54a1i 9 . . . . 5  |-  ( T. 
->  J  e.  (TopOn `  RR ) )
6 cnrehmeocntop.3 . . . . . . . 8  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
76cntoptop 13173 . . . . . . 7  |-  K  e. 
Top
8 cnrest2r 12877 . . . . . . 7  |-  ( K  e.  Top  ->  (
( J  tX  J
)  Cn  ( Kt  RR ) )  C_  (
( J  tX  J
)  Cn  K ) )
97, 8mp1i 10 . . . . . 6  |-  ( T. 
->  ( ( J  tX  J )  Cn  ( Kt  RR ) )  C_  (
( J  tX  J
)  Cn  K ) )
105, 5cnmpt1st 12928 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  x )  e.  ( ( J  tX  J
)  Cn  J ) )
116tgioo2cntop 13189 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( Kt  RR )
122, 11eqtri 2186 . . . . . . . 8  |-  J  =  ( Kt  RR )
1312oveq2i 5853 . . . . . . 7  |-  ( ( J  tX  J )  Cn  J )  =  ( ( J  tX  J )  Cn  ( Kt  RR ) )
1410, 13eleqtrdi 2259 . . . . . 6  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  x )  e.  ( ( J  tX  J
)  Cn  ( Kt  RR ) ) )
159, 14sseldd 3143 . . . . 5  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  x )  e.  ( ( J  tX  J
)  Cn  K ) )
166cntoptopon 13172 . . . . . . . 8  |-  K  e.  (TopOn `  CC )
1716a1i 9 . . . . . . 7  |-  ( T. 
->  K  e.  (TopOn `  CC ) )
18 ax-icn 7848 . . . . . . . 8  |-  _i  e.  CC
1918a1i 9 . . . . . . 7  |-  ( T. 
->  _i  e.  CC )
205, 5, 17, 19cnmpt2c 12930 . . . . . 6  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  _i )  e.  (
( J  tX  J
)  Cn  K ) )
215, 5cnmpt2nd 12929 . . . . . . . 8  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  y )  e.  ( ( J  tX  J
)  Cn  J ) )
2221, 13eleqtrdi 2259 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  y )  e.  ( ( J  tX  J
)  Cn  ( Kt  RR ) ) )
239, 22sseldd 3143 . . . . . 6  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  y )  e.  ( ( J  tX  J
)  Cn  K ) )
246mulcncntop 13194 . . . . . . 7  |-  x.  e.  ( ( K  tX  K )  Cn  K
)
2524a1i 9 . . . . . 6  |-  ( T. 
->  x.  e.  ( ( K  tX  K )  Cn  K ) )
265, 5, 20, 23, 25cnmpt22f 12935 . . . . 5  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  ( _i  x.  y
) )  e.  ( ( J  tX  J
)  Cn  K ) )
276addcncntop 13192 . . . . . 6  |-  +  e.  ( ( K  tX  K )  Cn  K
)
2827a1i 9 . . . . 5  |-  ( T. 
->  +  e.  ( ( K  tX  K )  Cn  K ) )
295, 5, 15, 26, 28cnmpt22f 12935 . . . 4  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )  e.  ( ( J  tX  J
)  Cn  K ) )
301, 29eqeltrid 2253 . . 3  |-  ( T. 
->  F  e.  (
( J  tX  J
)  Cn  K ) )
311cnrecnv 10852 . . . 4  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
32 ref 10797 . . . . . . . 8  |-  Re : CC
--> RR
3332a1i 9 . . . . . . 7  |-  ( T. 
->  Re : CC --> RR )
3433feqmptd 5539 . . . . . 6  |-  ( T. 
->  Re  =  ( z  e.  CC  |->  ( Re
`  z ) ) )
35 recncf 13213 . . . . . . 7  |-  Re  e.  ( CC -cn-> RR )
36 ssid 3162 . . . . . . . 8  |-  CC  C_  CC
37 ax-resscn 7845 . . . . . . . 8  |-  RR  C_  CC
3816toponrestid 12659 . . . . . . . . 9  |-  K  =  ( Kt  CC )
396, 38, 12cncfcncntop 13220 . . . . . . . 8  |-  ( ( CC  C_  CC  /\  RR  C_  CC )  ->  ( CC -cn-> RR )  =  ( K  Cn  J ) )
4036, 37, 39mp2an 423 . . . . . . 7  |-  ( CC
-cn-> RR )  =  ( K  Cn  J )
4135, 40eleqtri 2241 . . . . . 6  |-  Re  e.  ( K  Cn  J
)
4234, 41eqeltrrdi 2258 . . . . 5  |-  ( T. 
->  ( z  e.  CC  |->  ( Re `  z ) )  e.  ( K  Cn  J ) )
43 imf 10798 . . . . . . . 8  |-  Im : CC
--> RR
4443a1i 9 . . . . . . 7  |-  ( T. 
->  Im : CC --> RR )
4544feqmptd 5539 . . . . . 6  |-  ( T. 
->  Im  =  ( z  e.  CC  |->  ( Im
`  z ) ) )
46 imcncf 13214 . . . . . . 7  |-  Im  e.  ( CC -cn-> RR )
4746, 40eleqtri 2241 . . . . . 6  |-  Im  e.  ( K  Cn  J
)
4845, 47eqeltrrdi 2258 . . . . 5  |-  ( T. 
->  ( z  e.  CC  |->  ( Im `  z ) )  e.  ( K  Cn  J ) )
4917, 42, 48cnmpt1t 12925 . . . 4  |-  ( T. 
->  ( z  e.  CC  |->  <. ( Re `  z
) ,  ( Im
`  z ) >.
)  e.  ( K  Cn  ( J  tX  J ) ) )
5031, 49eqeltrid 2253 . . 3  |-  ( T. 
->  `' F  e.  ( K  Cn  ( J  tX  J ) ) )
51 ishmeo 12944 . . 3  |-  ( F  e.  ( ( J 
tX  J ) Homeo K )  <->  ( F  e.  ( ( J  tX  J )  Cn  K
)  /\  `' F  e.  ( K  Cn  ( J  tX  J ) ) ) )
5230, 50, 51sylanbrc 414 . 2  |-  ( T. 
->  F  e.  (
( J  tX  J
) Homeo K ) )
5352mptru 1352 1  |-  F  e.  ( ( J  tX  J ) Homeo K )
Colors of variables: wff set class
Syntax hints:    = wceq 1343   T. wtru 1344    e. wcel 2136    C_ wss 3116   <.cop 3579    |-> cmpt 4043   `'ccnv 4603   ran crn 4605    o. ccom 4608   -->wf 5184   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   CCcc 7751   RRcr 7752   _ici 7755    + caddc 7756    x. cmul 7758    - cmin 8069   (,)cioo 9824   Recre 10782   Imcim 10783   abscabs 10939   ↾t crest 12556   topGenctg 12571   MetOpencmopn 12625   Topctop 12635  TopOnctopon 12648    Cn ccn 12825    tX ctx 12892   Homeochmeo 12940   -cn->ccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-cn 12828  df-cnp 12829  df-tx 12893  df-hmeo 12941  df-cncf 13198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator