| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cnrehmeocntop | Unicode version | ||
| Description: The canonical bijection
from  | 
| Ref | Expression | 
|---|---|
| cnrehmeo.1 | 
 | 
| cnrehmeo.2 | 
 | 
| cnrehmeocntop.3 | 
 | 
| Ref | Expression | 
|---|---|
| cnrehmeocntop | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnrehmeo.1 | 
. . . 4
 | |
| 2 | cnrehmeo.2 | 
. . . . . . 7
 | |
| 3 | retopon 14762 | 
. . . . . . 7
 | |
| 4 | 2, 3 | eqeltri 2269 | 
. . . . . 6
 | 
| 5 | 4 | a1i 9 | 
. . . . 5
 | 
| 6 | cnrehmeocntop.3 | 
. . . . . . . 8
 | |
| 7 | 6 | cntoptop 14769 | 
. . . . . . 7
 | 
| 8 | cnrest2r 14473 | 
. . . . . . 7
 | |
| 9 | 7, 8 | mp1i 10 | 
. . . . . 6
 | 
| 10 | 5, 5 | cnmpt1st 14524 | 
. . . . . . 7
 | 
| 11 | 6 | tgioo2cntop 14793 | 
. . . . . . . . 9
 | 
| 12 | 2, 11 | eqtri 2217 | 
. . . . . . . 8
 | 
| 13 | 12 | oveq2i 5933 | 
. . . . . . 7
 | 
| 14 | 10, 13 | eleqtrdi 2289 | 
. . . . . 6
 | 
| 15 | 9, 14 | sseldd 3184 | 
. . . . 5
 | 
| 16 | 6 | cntoptopon 14768 | 
. . . . . . . 8
 | 
| 17 | 16 | a1i 9 | 
. . . . . . 7
 | 
| 18 | ax-icn 7974 | 
. . . . . . . 8
 | |
| 19 | 18 | a1i 9 | 
. . . . . . 7
 | 
| 20 | 5, 5, 17, 19 | cnmpt2c 14526 | 
. . . . . 6
 | 
| 21 | 5, 5 | cnmpt2nd 14525 | 
. . . . . . . 8
 | 
| 22 | 21, 13 | eleqtrdi 2289 | 
. . . . . . 7
 | 
| 23 | 9, 22 | sseldd 3184 | 
. . . . . 6
 | 
| 24 | 6 | mulcncntop 14800 | 
. . . . . . 7
 | 
| 25 | 24 | a1i 9 | 
. . . . . 6
 | 
| 26 | 5, 5, 20, 23, 25 | cnmpt22f 14531 | 
. . . . 5
 | 
| 27 | 6 | addcncntop 14798 | 
. . . . . 6
 | 
| 28 | 27 | a1i 9 | 
. . . . 5
 | 
| 29 | 5, 5, 15, 26, 28 | cnmpt22f 14531 | 
. . . 4
 | 
| 30 | 1, 29 | eqeltrid 2283 | 
. . 3
 | 
| 31 | 1 | cnrecnv 11075 | 
. . . 4
 | 
| 32 | ref 11020 | 
. . . . . . . 8
 | |
| 33 | 32 | a1i 9 | 
. . . . . . 7
 | 
| 34 | 33 | feqmptd 5614 | 
. . . . . 6
 | 
| 35 | recncf 14822 | 
. . . . . . 7
 | |
| 36 | ssid 3203 | 
. . . . . . . 8
 | |
| 37 | ax-resscn 7971 | 
. . . . . . . 8
 | |
| 38 | 16 | toponrestid 14257 | 
. . . . . . . . 9
 | 
| 39 | 6, 38, 12 | cncfcncntop 14829 | 
. . . . . . . 8
 | 
| 40 | 36, 37, 39 | mp2an 426 | 
. . . . . . 7
 | 
| 41 | 35, 40 | eleqtri 2271 | 
. . . . . 6
 | 
| 42 | 34, 41 | eqeltrrdi 2288 | 
. . . . 5
 | 
| 43 | imf 11021 | 
. . . . . . . 8
 | |
| 44 | 43 | a1i 9 | 
. . . . . . 7
 | 
| 45 | 44 | feqmptd 5614 | 
. . . . . 6
 | 
| 46 | imcncf 14823 | 
. . . . . . 7
 | |
| 47 | 46, 40 | eleqtri 2271 | 
. . . . . 6
 | 
| 48 | 45, 47 | eqeltrrdi 2288 | 
. . . . 5
 | 
| 49 | 17, 42, 48 | cnmpt1t 14521 | 
. . . 4
 | 
| 50 | 31, 49 | eqeltrid 2283 | 
. . 3
 | 
| 51 | ishmeo 14540 | 
. . 3
 | |
| 52 | 30, 50, 51 | sylanbrc 417 | 
. 2
 | 
| 53 | 52 | mptru 1373 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-addf 8001 ax-mulf 8002 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-ioo 9967 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-cn 14424 df-cnp 14425 df-tx 14489 df-hmeo 14537 df-cncf 14807 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |