ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrehmeocntop Unicode version

Theorem cnrehmeocntop 15115
Description: The canonical bijection from  ( RR  X.  RR ) to  CC described in cnref1o 9774 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if  ( RR  X.  RR ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cnrehmeo.1  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
cnrehmeo.2  |-  J  =  ( topGen `  ran  (,) )
cnrehmeocntop.3  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
cnrehmeocntop  |-  F  e.  ( ( J  tX  J ) Homeo K )
Distinct variable group:    x, y, K
Allowed substitution hints:    F( x, y)    J( x, y)

Proof of Theorem cnrehmeocntop
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cnrehmeo.1 . . . 4  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
2 cnrehmeo.2 . . . . . . 7  |-  J  =  ( topGen `  ran  (,) )
3 retopon 15031 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
42, 3eqeltri 2278 . . . . . 6  |-  J  e.  (TopOn `  RR )
54a1i 9 . . . . 5  |-  ( T. 
->  J  e.  (TopOn `  RR ) )
6 cnrehmeocntop.3 . . . . . . . 8  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
76cntoptop 15038 . . . . . . 7  |-  K  e. 
Top
8 cnrest2r 14742 . . . . . . 7  |-  ( K  e.  Top  ->  (
( J  tX  J
)  Cn  ( Kt  RR ) )  C_  (
( J  tX  J
)  Cn  K ) )
97, 8mp1i 10 . . . . . 6  |-  ( T. 
->  ( ( J  tX  J )  Cn  ( Kt  RR ) )  C_  (
( J  tX  J
)  Cn  K ) )
105, 5cnmpt1st 14793 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  x )  e.  ( ( J  tX  J
)  Cn  J ) )
116tgioo2cntop 15062 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( Kt  RR )
122, 11eqtri 2226 . . . . . . . 8  |-  J  =  ( Kt  RR )
1312oveq2i 5957 . . . . . . 7  |-  ( ( J  tX  J )  Cn  J )  =  ( ( J  tX  J )  Cn  ( Kt  RR ) )
1410, 13eleqtrdi 2298 . . . . . 6  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  x )  e.  ( ( J  tX  J
)  Cn  ( Kt  RR ) ) )
159, 14sseldd 3194 . . . . 5  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  x )  e.  ( ( J  tX  J
)  Cn  K ) )
166cntoptopon 15037 . . . . . . . 8  |-  K  e.  (TopOn `  CC )
1716a1i 9 . . . . . . 7  |-  ( T. 
->  K  e.  (TopOn `  CC ) )
18 ax-icn 8022 . . . . . . . 8  |-  _i  e.  CC
1918a1i 9 . . . . . . 7  |-  ( T. 
->  _i  e.  CC )
205, 5, 17, 19cnmpt2c 14795 . . . . . 6  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  _i )  e.  (
( J  tX  J
)  Cn  K ) )
215, 5cnmpt2nd 14794 . . . . . . . 8  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  y )  e.  ( ( J  tX  J
)  Cn  J ) )
2221, 13eleqtrdi 2298 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  y )  e.  ( ( J  tX  J
)  Cn  ( Kt  RR ) ) )
239, 22sseldd 3194 . . . . . 6  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  y )  e.  ( ( J  tX  J
)  Cn  K ) )
246mulcncntop 15069 . . . . . . 7  |-  x.  e.  ( ( K  tX  K )  Cn  K
)
2524a1i 9 . . . . . 6  |-  ( T. 
->  x.  e.  ( ( K  tX  K )  Cn  K ) )
265, 5, 20, 23, 25cnmpt22f 14800 . . . . 5  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  ( _i  x.  y
) )  e.  ( ( J  tX  J
)  Cn  K ) )
276addcncntop 15067 . . . . . 6  |-  +  e.  ( ( K  tX  K )  Cn  K
)
2827a1i 9 . . . . 5  |-  ( T. 
->  +  e.  ( ( K  tX  K )  Cn  K ) )
295, 5, 15, 26, 28cnmpt22f 14800 . . . 4  |-  ( T. 
->  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )  e.  ( ( J  tX  J
)  Cn  K ) )
301, 29eqeltrid 2292 . . 3  |-  ( T. 
->  F  e.  (
( J  tX  J
)  Cn  K ) )
311cnrecnv 11254 . . . 4  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
32 ref 11199 . . . . . . . 8  |-  Re : CC
--> RR
3332a1i 9 . . . . . . 7  |-  ( T. 
->  Re : CC --> RR )
3433feqmptd 5634 . . . . . 6  |-  ( T. 
->  Re  =  ( z  e.  CC  |->  ( Re
`  z ) ) )
35 recncf 15091 . . . . . . 7  |-  Re  e.  ( CC -cn-> RR )
36 ssid 3213 . . . . . . . 8  |-  CC  C_  CC
37 ax-resscn 8019 . . . . . . . 8  |-  RR  C_  CC
3816toponrestid 14526 . . . . . . . . 9  |-  K  =  ( Kt  CC )
396, 38, 12cncfcncntop 15098 . . . . . . . 8  |-  ( ( CC  C_  CC  /\  RR  C_  CC )  ->  ( CC -cn-> RR )  =  ( K  Cn  J ) )
4036, 37, 39mp2an 426 . . . . . . 7  |-  ( CC
-cn-> RR )  =  ( K  Cn  J )
4135, 40eleqtri 2280 . . . . . 6  |-  Re  e.  ( K  Cn  J
)
4234, 41eqeltrrdi 2297 . . . . 5  |-  ( T. 
->  ( z  e.  CC  |->  ( Re `  z ) )  e.  ( K  Cn  J ) )
43 imf 11200 . . . . . . . 8  |-  Im : CC
--> RR
4443a1i 9 . . . . . . 7  |-  ( T. 
->  Im : CC --> RR )
4544feqmptd 5634 . . . . . 6  |-  ( T. 
->  Im  =  ( z  e.  CC  |->  ( Im
`  z ) ) )
46 imcncf 15092 . . . . . . 7  |-  Im  e.  ( CC -cn-> RR )
4746, 40eleqtri 2280 . . . . . 6  |-  Im  e.  ( K  Cn  J
)
4845, 47eqeltrrdi 2297 . . . . 5  |-  ( T. 
->  ( z  e.  CC  |->  ( Im `  z ) )  e.  ( K  Cn  J ) )
4917, 42, 48cnmpt1t 14790 . . . 4  |-  ( T. 
->  ( z  e.  CC  |->  <. ( Re `  z
) ,  ( Im
`  z ) >.
)  e.  ( K  Cn  ( J  tX  J ) ) )
5031, 49eqeltrid 2292 . . 3  |-  ( T. 
->  `' F  e.  ( K  Cn  ( J  tX  J ) ) )
51 ishmeo 14809 . . 3  |-  ( F  e.  ( ( J 
tX  J ) Homeo K )  <->  ( F  e.  ( ( J  tX  J )  Cn  K
)  /\  `' F  e.  ( K  Cn  ( J  tX  J ) ) ) )
5230, 50, 51sylanbrc 417 . 2  |-  ( T. 
->  F  e.  (
( J  tX  J
) Homeo K ) )
5352mptru 1382 1  |-  F  e.  ( ( J  tX  J ) Homeo K )
Colors of variables: wff set class
Syntax hints:    = wceq 1373   T. wtru 1374    e. wcel 2176    C_ wss 3166   <.cop 3636    |-> cmpt 4106   `'ccnv 4675   ran crn 4677    o. ccom 4680   -->wf 5268   ` cfv 5272  (class class class)co 5946    e. cmpo 5948   CCcc 7925   RRcr 7926   _ici 7929    + caddc 7930    x. cmul 7932    - cmin 8245   (,)cioo 10012   Recre 11184   Imcim 11185   abscabs 11341   ↾t crest 13104   topGenctg 13119   MetOpencmopn 14336   Topctop 14502  TopOnctopon 14515    Cn ccn 14690    tX ctx 14757   Homeochmeo 14805   -cn->ccncf 15075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047  ax-addf 8049  ax-mulf 8050
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-map 6739  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-xneg 9896  df-xadd 9897  df-ioo 10016  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-rest 13106  df-topgen 13125  df-psmet 14338  df-xmet 14339  df-met 14340  df-bl 14341  df-mopn 14342  df-top 14503  df-topon 14516  df-bases 14548  df-cn 14693  df-cnp 14694  df-tx 14758  df-hmeo 14806  df-cncf 15076
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator