ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef0lem Unicode version

Theorem ef0lem 11668
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcllem.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
ef0lem  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  1 )
Distinct variable group:    A, n
Allowed substitution hint:    F( n)

Proof of Theorem ef0lem
Dummy variables  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
k  e.  ( ZZ>= ` 
0 ) )
2 nn0uz 9562 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
31, 2eleqtrrdi 2271 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
k  e.  NN0 )
4 elnn0 9178 . . . . 5  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
53, 4sylib 122 . . . 4  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( k  e.  NN  \/  k  =  0
) )
6 0cnd 7950 . . . . . . . . 9  |-  ( A  =  0  ->  0  e.  CC )
7 eleq1 2240 . . . . . . . . 9  |-  ( A  =  0  ->  ( A  e.  CC  <->  0  e.  CC ) )
86, 7mpbird 167 . . . . . . . 8  |-  ( A  =  0  ->  A  e.  CC )
9 nnnn0 9183 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  NN0 )
109adantl 277 . . . . . . . 8  |-  ( ( A  =  0  /\  k  e.  NN )  ->  k  e.  NN0 )
11 efcllem.1 . . . . . . . . 9  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
1211eftvalcn 11665 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
138, 10, 12syl2an2r 595 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
14 oveq1 5882 . . . . . . . . 9  |-  ( A  =  0  ->  ( A ^ k )  =  ( 0 ^ k
) )
15 0exp 10555 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
0 ^ k )  =  0 )
1614, 15sylan9eq 2230 . . . . . . . 8  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( A ^
k )  =  0 )
1716oveq1d 5890 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( ( A ^ k )  / 
( ! `  k
) )  =  ( 0  /  ( ! `
 k ) ) )
18 faccl 10715 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
19 nncn 8927 . . . . . . . . 9  |-  ( ( ! `  k )  e.  NN  ->  ( ! `  k )  e.  CC )
20 nnap0 8948 . . . . . . . . 9  |-  ( ( ! `  k )  e.  NN  ->  ( ! `  k ) #  0 )
2119, 20div0apd 8744 . . . . . . . 8  |-  ( ( ! `  k )  e.  NN  ->  (
0  /  ( ! `
 k ) )  =  0 )
2210, 18, 213syl 17 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( 0  / 
( ! `  k
) )  =  0 )
2313, 17, 223eqtrd 2214 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  0 )
24 nnne0 8947 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  =/=  0 )
25 velsn 3610 . . . . . . . . . 10  |-  ( k  e.  { 0 }  <-> 
k  =  0 )
2625necon3bbii 2384 . . . . . . . . 9  |-  ( -.  k  e.  { 0 }  <->  k  =/=  0
)
2724, 26sylibr 134 . . . . . . . 8  |-  ( k  e.  NN  ->  -.  k  e.  { 0 } )
2827adantl 277 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  -.  k  e.  { 0 } )
2928iffalsed 3545 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  NN )  ->  if ( k  e.  { 0 } ,  1 ,  0 )  =  0 )
3023, 29eqtr4d 2213 . . . . 5  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  if ( k  e.  {
0 } ,  1 ,  0 ) )
31 fveq2 5516 . . . . . . 7  |-  ( k  =  0  ->  ( F `  k )  =  ( F ` 
0 ) )
32 0nn0 9191 . . . . . . . . . 10  |-  0  e.  NN0
3311eftvalcn 11665 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  e.  NN0 )  -> 
( F `  0
)  =  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )
348, 32, 33sylancl 413 . . . . . . . . 9  |-  ( A  =  0  ->  ( F `  0 )  =  ( ( A ^ 0 )  / 
( ! `  0
) ) )
35 oveq1 5882 . . . . . . . . . . 11  |-  ( A  =  0  ->  ( A ^ 0 )  =  ( 0 ^ 0 ) )
36 0exp0e1 10525 . . . . . . . . . . 11  |-  ( 0 ^ 0 )  =  1
3735, 36eqtrdi 2226 . . . . . . . . . 10  |-  ( A  =  0  ->  ( A ^ 0 )  =  1 )
3837oveq1d 5890 . . . . . . . . 9  |-  ( A  =  0  ->  (
( A ^ 0 )  /  ( ! `
 0 ) )  =  ( 1  / 
( ! `  0
) ) )
3934, 38eqtrd 2210 . . . . . . . 8  |-  ( A  =  0  ->  ( F `  0 )  =  ( 1  / 
( ! `  0
) ) )
40 fac0 10708 . . . . . . . . . 10  |-  ( ! `
 0 )  =  1
4140oveq2i 5886 . . . . . . . . 9  |-  ( 1  /  ( ! ` 
0 ) )  =  ( 1  /  1
)
42 1div1e1 8661 . . . . . . . . 9  |-  ( 1  /  1 )  =  1
4341, 42eqtr2i 2199 . . . . . . . 8  |-  1  =  ( 1  / 
( ! `  0
) )
4439, 43eqtr4di 2228 . . . . . . 7  |-  ( A  =  0  ->  ( F `  0 )  =  1 )
4531, 44sylan9eqr 2232 . . . . . 6  |-  ( ( A  =  0  /\  k  =  0 )  ->  ( F `  k )  =  1 )
46 simpr 110 . . . . . . . 8  |-  ( ( A  =  0  /\  k  =  0 )  ->  k  =  0 )
4746, 25sylibr 134 . . . . . . 7  |-  ( ( A  =  0  /\  k  =  0 )  ->  k  e.  {
0 } )
4847iftrued 3542 . . . . . 6  |-  ( ( A  =  0  /\  k  =  0 )  ->  if ( k  e.  { 0 } ,  1 ,  0 )  =  1 )
4945, 48eqtr4d 2213 . . . . 5  |-  ( ( A  =  0  /\  k  =  0 )  ->  ( F `  k )  =  if ( k  e.  {
0 } ,  1 ,  0 ) )
5030, 49jaodan 797 . . . 4  |-  ( ( A  =  0  /\  ( k  e.  NN  \/  k  =  0
) )  ->  ( F `  k )  =  if ( k  e. 
{ 0 } , 
1 ,  0 ) )
515, 50syldan 282 . . 3  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( F `  k
)  =  if ( k  e.  { 0 } ,  1 ,  0 ) )
5232, 2eleqtri 2252 . . . 4  |-  0  e.  ( ZZ>= `  0 )
5352a1i 9 . . 3  |-  ( A  =  0  ->  0  e.  ( ZZ>= `  0 )
)
54 1cnd 7973 . . 3  |-  ( ( A  =  0  /\  k  e.  { 0 } )  ->  1  e.  CC )
5525biimpri 133 . . . . . . 7  |-  ( k  =  0  ->  k  e.  { 0 } )
5627, 55orim12i 759 . . . . . 6  |-  ( ( k  e.  NN  \/  k  =  0 )  ->  ( -.  k  e.  { 0 }  \/  k  e.  { 0 } ) )
575, 56syl 14 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( -.  k  e. 
{ 0 }  \/  k  e.  { 0 } ) )
5857orcomd 729 . . . 4  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( k  e.  {
0 }  \/  -.  k  e.  { 0 } ) )
59 df-dc 835 . . . 4  |-  (DECID  k  e. 
{ 0 }  <->  ( k  e.  { 0 }  \/  -.  k  e.  { 0 } ) )
6058, 59sylibr 134 . . 3  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> DECID  k  e.  { 0 } )
61 0z 9264 . . . . . 6  |-  0  e.  ZZ
62 fzsn 10066 . . . . . 6  |-  ( 0  e.  ZZ  ->  (
0 ... 0 )  =  { 0 } )
6361, 62ax-mp 5 . . . . 5  |-  ( 0 ... 0 )  =  { 0 }
6463eqimss2i 3213 . . . 4  |-  { 0 }  C_  ( 0 ... 0 )
6564a1i 9 . . 3  |-  ( A  =  0  ->  { 0 }  C_  ( 0 ... 0 ) )
6651, 53, 54, 60, 65fsum3cvg2 11402 . 2  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  (  seq 0 (  +  ,  F ) `  0
) )
6761a1i 9 . . . 4  |-  ( A  =  0  ->  0  e.  ZZ )
688, 3, 12syl2an2r 595 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
69 eftcl 11662 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
708, 3, 69syl2an2r 595 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
7168, 70eqeltrd 2254 . . . 4  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( F `  k
)  e.  CC )
72 addcl 7936 . . . . 5  |-  ( ( k  e.  CC  /\  y  e.  CC )  ->  ( k  +  y )  e.  CC )
7372adantl 277 . . . 4  |-  ( ( A  =  0  /\  ( k  e.  CC  /\  y  e.  CC ) )  ->  ( k  +  y )  e.  CC )
7467, 71, 73seq3-1 10460 . . 3  |-  ( A  =  0  ->  (  seq 0 (  +  ,  F ) `  0
)  =  ( F `
 0 ) )
7574, 44eqtrd 2210 . 2  |-  ( A  =  0  ->  (  seq 0 (  +  ,  F ) `  0
)  =  1 )
7666, 75breqtrd 4030 1  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347    C_ wss 3130   ifcif 3535   {csn 3593   class class class wbr 4004    |-> cmpt 4065   ` cfv 5217  (class class class)co 5875   CCcc 7809   0cc0 7811   1c1 7812    + caddc 7814    / cdiv 8629   NNcn 8919   NN0cn0 9176   ZZcz 9253   ZZ>=cuz 9528   ...cfz 10008    seqcseq 10445   ^cexp 10519   !cfa 10705    ~~> cli 11286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-n0 9177  df-z 9254  df-uz 9529  df-rp 9654  df-fz 10009  df-seqfrec 10446  df-exp 10520  df-fac 10706  df-cj 10851  df-rsqrt 11007  df-abs 11008  df-clim 11287
This theorem is referenced by:  ef0  11680
  Copyright terms: Public domain W3C validator