| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ef0lem | Unicode version | ||
| Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| Ref | Expression |
|---|---|
| efcllem.1 |
|
| Ref | Expression |
|---|---|
| ef0lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | nn0uz 9683 |
. . . . . 6
| |
| 3 | 1, 2 | eleqtrrdi 2299 |
. . . . 5
|
| 4 | elnn0 9297 |
. . . . 5
| |
| 5 | 3, 4 | sylib 122 |
. . . 4
|
| 6 | 0cnd 8065 |
. . . . . . . . 9
| |
| 7 | eleq1 2268 |
. . . . . . . . 9
| |
| 8 | 6, 7 | mpbird 167 |
. . . . . . . 8
|
| 9 | nnnn0 9302 |
. . . . . . . . 9
| |
| 10 | 9 | adantl 277 |
. . . . . . . 8
|
| 11 | efcllem.1 |
. . . . . . . . 9
| |
| 12 | 11 | eftvalcn 11968 |
. . . . . . . 8
|
| 13 | 8, 10, 12 | syl2an2r 595 |
. . . . . . 7
|
| 14 | oveq1 5951 |
. . . . . . . . 9
| |
| 15 | 0exp 10719 |
. . . . . . . . 9
| |
| 16 | 14, 15 | sylan9eq 2258 |
. . . . . . . 8
|
| 17 | 16 | oveq1d 5959 |
. . . . . . 7
|
| 18 | faccl 10880 |
. . . . . . . 8
| |
| 19 | nncn 9044 |
. . . . . . . . 9
| |
| 20 | nnap0 9065 |
. . . . . . . . 9
| |
| 21 | 19, 20 | div0apd 8860 |
. . . . . . . 8
|
| 22 | 10, 18, 21 | 3syl 17 |
. . . . . . 7
|
| 23 | 13, 17, 22 | 3eqtrd 2242 |
. . . . . 6
|
| 24 | nnne0 9064 |
. . . . . . . . 9
| |
| 25 | velsn 3650 |
. . . . . . . . . 10
| |
| 26 | 25 | necon3bbii 2413 |
. . . . . . . . 9
|
| 27 | 24, 26 | sylibr 134 |
. . . . . . . 8
|
| 28 | 27 | adantl 277 |
. . . . . . 7
|
| 29 | 28 | iffalsed 3581 |
. . . . . 6
|
| 30 | 23, 29 | eqtr4d 2241 |
. . . . 5
|
| 31 | fveq2 5576 |
. . . . . . 7
| |
| 32 | 0nn0 9310 |
. . . . . . . . . 10
| |
| 33 | 11 | eftvalcn 11968 |
. . . . . . . . . 10
|
| 34 | 8, 32, 33 | sylancl 413 |
. . . . . . . . 9
|
| 35 | oveq1 5951 |
. . . . . . . . . . 11
| |
| 36 | 0exp0e1 10689 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | eqtrdi 2254 |
. . . . . . . . . 10
|
| 38 | 37 | oveq1d 5959 |
. . . . . . . . 9
|
| 39 | 34, 38 | eqtrd 2238 |
. . . . . . . 8
|
| 40 | fac0 10873 |
. . . . . . . . . 10
| |
| 41 | 40 | oveq2i 5955 |
. . . . . . . . 9
|
| 42 | 1div1e1 8777 |
. . . . . . . . 9
| |
| 43 | 41, 42 | eqtr2i 2227 |
. . . . . . . 8
|
| 44 | 39, 43 | eqtr4di 2256 |
. . . . . . 7
|
| 45 | 31, 44 | sylan9eqr 2260 |
. . . . . 6
|
| 46 | simpr 110 |
. . . . . . . 8
| |
| 47 | 46, 25 | sylibr 134 |
. . . . . . 7
|
| 48 | 47 | iftrued 3578 |
. . . . . 6
|
| 49 | 45, 48 | eqtr4d 2241 |
. . . . 5
|
| 50 | 30, 49 | jaodan 799 |
. . . 4
|
| 51 | 5, 50 | syldan 282 |
. . 3
|
| 52 | 32, 2 | eleqtri 2280 |
. . . 4
|
| 53 | 52 | a1i 9 |
. . 3
|
| 54 | 1cnd 8088 |
. . 3
| |
| 55 | 25 | biimpri 133 |
. . . . . . 7
|
| 56 | 27, 55 | orim12i 761 |
. . . . . 6
|
| 57 | 5, 56 | syl 14 |
. . . . 5
|
| 58 | 57 | orcomd 731 |
. . . 4
|
| 59 | df-dc 837 |
. . . 4
| |
| 60 | 58, 59 | sylibr 134 |
. . 3
|
| 61 | 0z 9383 |
. . . . . 6
| |
| 62 | fzsn 10188 |
. . . . . 6
| |
| 63 | 61, 62 | ax-mp 5 |
. . . . 5
|
| 64 | 63 | eqimss2i 3250 |
. . . 4
|
| 65 | 64 | a1i 9 |
. . 3
|
| 66 | 51, 53, 54, 60, 65 | fsum3cvg2 11705 |
. 2
|
| 67 | 61 | a1i 9 |
. . . 4
|
| 68 | 8, 3, 12 | syl2an2r 595 |
. . . . 5
|
| 69 | eftcl 11965 |
. . . . . 6
| |
| 70 | 8, 3, 69 | syl2an2r 595 |
. . . . 5
|
| 71 | 68, 70 | eqeltrd 2282 |
. . . 4
|
| 72 | addcl 8050 |
. . . . 5
| |
| 73 | 72 | adantl 277 |
. . . 4
|
| 74 | 67, 71, 73 | seq3-1 10607 |
. . 3
|
| 75 | 74, 44 | eqtrd 2238 |
. 2
|
| 76 | 66, 75 | breqtrd 4070 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-n0 9296 df-z 9373 df-uz 9649 df-rp 9776 df-fz 10131 df-seqfrec 10593 df-exp 10684 df-fac 10871 df-cj 11153 df-rsqrt 11309 df-abs 11310 df-clim 11590 |
| This theorem is referenced by: ef0 11983 |
| Copyright terms: Public domain | W3C validator |