| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ef0lem | Unicode version | ||
| Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| Ref | Expression |
|---|---|
| efcllem.1 |
|
| Ref | Expression |
|---|---|
| ef0lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | nn0uz 9682 |
. . . . . 6
| |
| 3 | 1, 2 | eleqtrrdi 2298 |
. . . . 5
|
| 4 | elnn0 9296 |
. . . . 5
| |
| 5 | 3, 4 | sylib 122 |
. . . 4
|
| 6 | 0cnd 8064 |
. . . . . . . . 9
| |
| 7 | eleq1 2267 |
. . . . . . . . 9
| |
| 8 | 6, 7 | mpbird 167 |
. . . . . . . 8
|
| 9 | nnnn0 9301 |
. . . . . . . . 9
| |
| 10 | 9 | adantl 277 |
. . . . . . . 8
|
| 11 | efcllem.1 |
. . . . . . . . 9
| |
| 12 | 11 | eftvalcn 11939 |
. . . . . . . 8
|
| 13 | 8, 10, 12 | syl2an2r 595 |
. . . . . . 7
|
| 14 | oveq1 5950 |
. . . . . . . . 9
| |
| 15 | 0exp 10717 |
. . . . . . . . 9
| |
| 16 | 14, 15 | sylan9eq 2257 |
. . . . . . . 8
|
| 17 | 16 | oveq1d 5958 |
. . . . . . 7
|
| 18 | faccl 10878 |
. . . . . . . 8
| |
| 19 | nncn 9043 |
. . . . . . . . 9
| |
| 20 | nnap0 9064 |
. . . . . . . . 9
| |
| 21 | 19, 20 | div0apd 8859 |
. . . . . . . 8
|
| 22 | 10, 18, 21 | 3syl 17 |
. . . . . . 7
|
| 23 | 13, 17, 22 | 3eqtrd 2241 |
. . . . . 6
|
| 24 | nnne0 9063 |
. . . . . . . . 9
| |
| 25 | velsn 3649 |
. . . . . . . . . 10
| |
| 26 | 25 | necon3bbii 2412 |
. . . . . . . . 9
|
| 27 | 24, 26 | sylibr 134 |
. . . . . . . 8
|
| 28 | 27 | adantl 277 |
. . . . . . 7
|
| 29 | 28 | iffalsed 3580 |
. . . . . 6
|
| 30 | 23, 29 | eqtr4d 2240 |
. . . . 5
|
| 31 | fveq2 5575 |
. . . . . . 7
| |
| 32 | 0nn0 9309 |
. . . . . . . . . 10
| |
| 33 | 11 | eftvalcn 11939 |
. . . . . . . . . 10
|
| 34 | 8, 32, 33 | sylancl 413 |
. . . . . . . . 9
|
| 35 | oveq1 5950 |
. . . . . . . . . . 11
| |
| 36 | 0exp0e1 10687 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | eqtrdi 2253 |
. . . . . . . . . 10
|
| 38 | 37 | oveq1d 5958 |
. . . . . . . . 9
|
| 39 | 34, 38 | eqtrd 2237 |
. . . . . . . 8
|
| 40 | fac0 10871 |
. . . . . . . . . 10
| |
| 41 | 40 | oveq2i 5954 |
. . . . . . . . 9
|
| 42 | 1div1e1 8776 |
. . . . . . . . 9
| |
| 43 | 41, 42 | eqtr2i 2226 |
. . . . . . . 8
|
| 44 | 39, 43 | eqtr4di 2255 |
. . . . . . 7
|
| 45 | 31, 44 | sylan9eqr 2259 |
. . . . . 6
|
| 46 | simpr 110 |
. . . . . . . 8
| |
| 47 | 46, 25 | sylibr 134 |
. . . . . . 7
|
| 48 | 47 | iftrued 3577 |
. . . . . 6
|
| 49 | 45, 48 | eqtr4d 2240 |
. . . . 5
|
| 50 | 30, 49 | jaodan 798 |
. . . 4
|
| 51 | 5, 50 | syldan 282 |
. . 3
|
| 52 | 32, 2 | eleqtri 2279 |
. . . 4
|
| 53 | 52 | a1i 9 |
. . 3
|
| 54 | 1cnd 8087 |
. . 3
| |
| 55 | 25 | biimpri 133 |
. . . . . . 7
|
| 56 | 27, 55 | orim12i 760 |
. . . . . 6
|
| 57 | 5, 56 | syl 14 |
. . . . 5
|
| 58 | 57 | orcomd 730 |
. . . 4
|
| 59 | df-dc 836 |
. . . 4
| |
| 60 | 58, 59 | sylibr 134 |
. . 3
|
| 61 | 0z 9382 |
. . . . . 6
| |
| 62 | fzsn 10187 |
. . . . . 6
| |
| 63 | 61, 62 | ax-mp 5 |
. . . . 5
|
| 64 | 63 | eqimss2i 3249 |
. . . 4
|
| 65 | 64 | a1i 9 |
. . 3
|
| 66 | 51, 53, 54, 60, 65 | fsum3cvg2 11676 |
. 2
|
| 67 | 61 | a1i 9 |
. . . 4
|
| 68 | 8, 3, 12 | syl2an2r 595 |
. . . . 5
|
| 69 | eftcl 11936 |
. . . . . 6
| |
| 70 | 8, 3, 69 | syl2an2r 595 |
. . . . 5
|
| 71 | 68, 70 | eqeltrd 2281 |
. . . 4
|
| 72 | addcl 8049 |
. . . . 5
| |
| 73 | 72 | adantl 277 |
. . . 4
|
| 74 | 67, 71, 73 | seq3-1 10605 |
. . 3
|
| 75 | 74, 44 | eqtrd 2237 |
. 2
|
| 76 | 66, 75 | breqtrd 4069 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-n0 9295 df-z 9372 df-uz 9648 df-rp 9775 df-fz 10130 df-seqfrec 10591 df-exp 10682 df-fac 10869 df-cj 11124 df-rsqrt 11280 df-abs 11281 df-clim 11561 |
| This theorem is referenced by: ef0 11954 |
| Copyright terms: Public domain | W3C validator |