ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef0lem Unicode version

Theorem ef0lem 11623
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcllem.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
ef0lem  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  1 )
Distinct variable group:    A, n
Allowed substitution hint:    F( n)

Proof of Theorem ef0lem
Dummy variables  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
k  e.  ( ZZ>= ` 
0 ) )
2 nn0uz 9521 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
31, 2eleqtrrdi 2264 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
k  e.  NN0 )
4 elnn0 9137 . . . . 5  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
53, 4sylib 121 . . . 4  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( k  e.  NN  \/  k  =  0
) )
6 0cnd 7913 . . . . . . . . 9  |-  ( A  =  0  ->  0  e.  CC )
7 eleq1 2233 . . . . . . . . 9  |-  ( A  =  0  ->  ( A  e.  CC  <->  0  e.  CC ) )
86, 7mpbird 166 . . . . . . . 8  |-  ( A  =  0  ->  A  e.  CC )
9 nnnn0 9142 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  NN0 )
109adantl 275 . . . . . . . 8  |-  ( ( A  =  0  /\  k  e.  NN )  ->  k  e.  NN0 )
11 efcllem.1 . . . . . . . . 9  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
1211eftvalcn 11620 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
138, 10, 12syl2an2r 590 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
14 oveq1 5860 . . . . . . . . 9  |-  ( A  =  0  ->  ( A ^ k )  =  ( 0 ^ k
) )
15 0exp 10511 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
0 ^ k )  =  0 )
1614, 15sylan9eq 2223 . . . . . . . 8  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( A ^
k )  =  0 )
1716oveq1d 5868 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( ( A ^ k )  / 
( ! `  k
) )  =  ( 0  /  ( ! `
 k ) ) )
18 faccl 10669 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
19 nncn 8886 . . . . . . . . 9  |-  ( ( ! `  k )  e.  NN  ->  ( ! `  k )  e.  CC )
20 nnap0 8907 . . . . . . . . 9  |-  ( ( ! `  k )  e.  NN  ->  ( ! `  k ) #  0 )
2119, 20div0apd 8704 . . . . . . . 8  |-  ( ( ! `  k )  e.  NN  ->  (
0  /  ( ! `
 k ) )  =  0 )
2210, 18, 213syl 17 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( 0  / 
( ! `  k
) )  =  0 )
2313, 17, 223eqtrd 2207 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  0 )
24 nnne0 8906 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  =/=  0 )
25 velsn 3600 . . . . . . . . . 10  |-  ( k  e.  { 0 }  <-> 
k  =  0 )
2625necon3bbii 2377 . . . . . . . . 9  |-  ( -.  k  e.  { 0 }  <->  k  =/=  0
)
2724, 26sylibr 133 . . . . . . . 8  |-  ( k  e.  NN  ->  -.  k  e.  { 0 } )
2827adantl 275 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  -.  k  e.  { 0 } )
2928iffalsed 3536 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  NN )  ->  if ( k  e.  { 0 } ,  1 ,  0 )  =  0 )
3023, 29eqtr4d 2206 . . . . 5  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  if ( k  e.  {
0 } ,  1 ,  0 ) )
31 fveq2 5496 . . . . . . 7  |-  ( k  =  0  ->  ( F `  k )  =  ( F ` 
0 ) )
32 0nn0 9150 . . . . . . . . . 10  |-  0  e.  NN0
3311eftvalcn 11620 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  e.  NN0 )  -> 
( F `  0
)  =  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )
348, 32, 33sylancl 411 . . . . . . . . 9  |-  ( A  =  0  ->  ( F `  0 )  =  ( ( A ^ 0 )  / 
( ! `  0
) ) )
35 oveq1 5860 . . . . . . . . . . 11  |-  ( A  =  0  ->  ( A ^ 0 )  =  ( 0 ^ 0 ) )
36 0exp0e1 10481 . . . . . . . . . . 11  |-  ( 0 ^ 0 )  =  1
3735, 36eqtrdi 2219 . . . . . . . . . 10  |-  ( A  =  0  ->  ( A ^ 0 )  =  1 )
3837oveq1d 5868 . . . . . . . . 9  |-  ( A  =  0  ->  (
( A ^ 0 )  /  ( ! `
 0 ) )  =  ( 1  / 
( ! `  0
) ) )
3934, 38eqtrd 2203 . . . . . . . 8  |-  ( A  =  0  ->  ( F `  0 )  =  ( 1  / 
( ! `  0
) ) )
40 fac0 10662 . . . . . . . . . 10  |-  ( ! `
 0 )  =  1
4140oveq2i 5864 . . . . . . . . 9  |-  ( 1  /  ( ! ` 
0 ) )  =  ( 1  /  1
)
42 1div1e1 8621 . . . . . . . . 9  |-  ( 1  /  1 )  =  1
4341, 42eqtr2i 2192 . . . . . . . 8  |-  1  =  ( 1  / 
( ! `  0
) )
4439, 43eqtr4di 2221 . . . . . . 7  |-  ( A  =  0  ->  ( F `  0 )  =  1 )
4531, 44sylan9eqr 2225 . . . . . 6  |-  ( ( A  =  0  /\  k  =  0 )  ->  ( F `  k )  =  1 )
46 simpr 109 . . . . . . . 8  |-  ( ( A  =  0  /\  k  =  0 )  ->  k  =  0 )
4746, 25sylibr 133 . . . . . . 7  |-  ( ( A  =  0  /\  k  =  0 )  ->  k  e.  {
0 } )
4847iftrued 3533 . . . . . 6  |-  ( ( A  =  0  /\  k  =  0 )  ->  if ( k  e.  { 0 } ,  1 ,  0 )  =  1 )
4945, 48eqtr4d 2206 . . . . 5  |-  ( ( A  =  0  /\  k  =  0 )  ->  ( F `  k )  =  if ( k  e.  {
0 } ,  1 ,  0 ) )
5030, 49jaodan 792 . . . 4  |-  ( ( A  =  0  /\  ( k  e.  NN  \/  k  =  0
) )  ->  ( F `  k )  =  if ( k  e. 
{ 0 } , 
1 ,  0 ) )
515, 50syldan 280 . . 3  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( F `  k
)  =  if ( k  e.  { 0 } ,  1 ,  0 ) )
5232, 2eleqtri 2245 . . . 4  |-  0  e.  ( ZZ>= `  0 )
5352a1i 9 . . 3  |-  ( A  =  0  ->  0  e.  ( ZZ>= `  0 )
)
54 1cnd 7936 . . 3  |-  ( ( A  =  0  /\  k  e.  { 0 } )  ->  1  e.  CC )
5525biimpri 132 . . . . . . 7  |-  ( k  =  0  ->  k  e.  { 0 } )
5627, 55orim12i 754 . . . . . 6  |-  ( ( k  e.  NN  \/  k  =  0 )  ->  ( -.  k  e.  { 0 }  \/  k  e.  { 0 } ) )
575, 56syl 14 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( -.  k  e. 
{ 0 }  \/  k  e.  { 0 } ) )
5857orcomd 724 . . . 4  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( k  e.  {
0 }  \/  -.  k  e.  { 0 } ) )
59 df-dc 830 . . . 4  |-  (DECID  k  e. 
{ 0 }  <->  ( k  e.  { 0 }  \/  -.  k  e.  { 0 } ) )
6058, 59sylibr 133 . . 3  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> DECID  k  e.  { 0 } )
61 0z 9223 . . . . . 6  |-  0  e.  ZZ
62 fzsn 10022 . . . . . 6  |-  ( 0  e.  ZZ  ->  (
0 ... 0 )  =  { 0 } )
6361, 62ax-mp 5 . . . . 5  |-  ( 0 ... 0 )  =  { 0 }
6463eqimss2i 3204 . . . 4  |-  { 0 }  C_  ( 0 ... 0 )
6564a1i 9 . . 3  |-  ( A  =  0  ->  { 0 }  C_  ( 0 ... 0 ) )
6651, 53, 54, 60, 65fsum3cvg2 11357 . 2  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  (  seq 0 (  +  ,  F ) `  0
) )
6761a1i 9 . . . 4  |-  ( A  =  0  ->  0  e.  ZZ )
688, 3, 12syl2an2r 590 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
69 eftcl 11617 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
708, 3, 69syl2an2r 590 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
7168, 70eqeltrd 2247 . . . 4  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( F `  k
)  e.  CC )
72 addcl 7899 . . . . 5  |-  ( ( k  e.  CC  /\  y  e.  CC )  ->  ( k  +  y )  e.  CC )
7372adantl 275 . . . 4  |-  ( ( A  =  0  /\  ( k  e.  CC  /\  y  e.  CC ) )  ->  ( k  +  y )  e.  CC )
7467, 71, 73seq3-1 10416 . . 3  |-  ( A  =  0  ->  (  seq 0 (  +  ,  F ) `  0
)  =  ( F `
 0 ) )
7574, 44eqtrd 2203 . 2  |-  ( A  =  0  ->  (  seq 0 (  +  ,  F ) `  0
)  =  1 )
7666, 75breqtrd 4015 1  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340    C_ wss 3121   ifcif 3526   {csn 3583   class class class wbr 3989    |-> cmpt 4050   ` cfv 5198  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775    + caddc 7777    / cdiv 8589   NNcn 8878   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965    seqcseq 10401   ^cexp 10475   !cfa 10659    ~~> cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-fz 9966  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-cj 10806  df-rsqrt 10962  df-abs 10963  df-clim 11242
This theorem is referenced by:  ef0  11635
  Copyright terms: Public domain W3C validator