Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ef0lem | Unicode version |
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
efcllem.1 |
Ref | Expression |
---|---|
ef0lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . . 6 | |
2 | nn0uz 9521 | . . . . . 6 | |
3 | 1, 2 | eleqtrrdi 2264 | . . . . 5 |
4 | elnn0 9137 | . . . . 5 | |
5 | 3, 4 | sylib 121 | . . . 4 |
6 | 0cnd 7913 | . . . . . . . . 9 | |
7 | eleq1 2233 | . . . . . . . . 9 | |
8 | 6, 7 | mpbird 166 | . . . . . . . 8 |
9 | nnnn0 9142 | . . . . . . . . 9 | |
10 | 9 | adantl 275 | . . . . . . . 8 |
11 | efcllem.1 | . . . . . . . . 9 | |
12 | 11 | eftvalcn 11620 | . . . . . . . 8 |
13 | 8, 10, 12 | syl2an2r 590 | . . . . . . 7 |
14 | oveq1 5860 | . . . . . . . . 9 | |
15 | 0exp 10511 | . . . . . . . . 9 | |
16 | 14, 15 | sylan9eq 2223 | . . . . . . . 8 |
17 | 16 | oveq1d 5868 | . . . . . . 7 |
18 | faccl 10669 | . . . . . . . 8 | |
19 | nncn 8886 | . . . . . . . . 9 | |
20 | nnap0 8907 | . . . . . . . . 9 # | |
21 | 19, 20 | div0apd 8704 | . . . . . . . 8 |
22 | 10, 18, 21 | 3syl 17 | . . . . . . 7 |
23 | 13, 17, 22 | 3eqtrd 2207 | . . . . . 6 |
24 | nnne0 8906 | . . . . . . . . 9 | |
25 | velsn 3600 | . . . . . . . . . 10 | |
26 | 25 | necon3bbii 2377 | . . . . . . . . 9 |
27 | 24, 26 | sylibr 133 | . . . . . . . 8 |
28 | 27 | adantl 275 | . . . . . . 7 |
29 | 28 | iffalsed 3536 | . . . . . 6 |
30 | 23, 29 | eqtr4d 2206 | . . . . 5 |
31 | fveq2 5496 | . . . . . . 7 | |
32 | 0nn0 9150 | . . . . . . . . . 10 | |
33 | 11 | eftvalcn 11620 | . . . . . . . . . 10 |
34 | 8, 32, 33 | sylancl 411 | . . . . . . . . 9 |
35 | oveq1 5860 | . . . . . . . . . . 11 | |
36 | 0exp0e1 10481 | . . . . . . . . . . 11 | |
37 | 35, 36 | eqtrdi 2219 | . . . . . . . . . 10 |
38 | 37 | oveq1d 5868 | . . . . . . . . 9 |
39 | 34, 38 | eqtrd 2203 | . . . . . . . 8 |
40 | fac0 10662 | . . . . . . . . . 10 | |
41 | 40 | oveq2i 5864 | . . . . . . . . 9 |
42 | 1div1e1 8621 | . . . . . . . . 9 | |
43 | 41, 42 | eqtr2i 2192 | . . . . . . . 8 |
44 | 39, 43 | eqtr4di 2221 | . . . . . . 7 |
45 | 31, 44 | sylan9eqr 2225 | . . . . . 6 |
46 | simpr 109 | . . . . . . . 8 | |
47 | 46, 25 | sylibr 133 | . . . . . . 7 |
48 | 47 | iftrued 3533 | . . . . . 6 |
49 | 45, 48 | eqtr4d 2206 | . . . . 5 |
50 | 30, 49 | jaodan 792 | . . . 4 |
51 | 5, 50 | syldan 280 | . . 3 |
52 | 32, 2 | eleqtri 2245 | . . . 4 |
53 | 52 | a1i 9 | . . 3 |
54 | 1cnd 7936 | . . 3 | |
55 | 25 | biimpri 132 | . . . . . . 7 |
56 | 27, 55 | orim12i 754 | . . . . . 6 |
57 | 5, 56 | syl 14 | . . . . 5 |
58 | 57 | orcomd 724 | . . . 4 |
59 | df-dc 830 | . . . 4 DECID | |
60 | 58, 59 | sylibr 133 | . . 3 DECID |
61 | 0z 9223 | . . . . . 6 | |
62 | fzsn 10022 | . . . . . 6 | |
63 | 61, 62 | ax-mp 5 | . . . . 5 |
64 | 63 | eqimss2i 3204 | . . . 4 |
65 | 64 | a1i 9 | . . 3 |
66 | 51, 53, 54, 60, 65 | fsum3cvg2 11357 | . 2 |
67 | 61 | a1i 9 | . . . 4 |
68 | 8, 3, 12 | syl2an2r 590 | . . . . 5 |
69 | eftcl 11617 | . . . . . 6 | |
70 | 8, 3, 69 | syl2an2r 590 | . . . . 5 |
71 | 68, 70 | eqeltrd 2247 | . . . 4 |
72 | addcl 7899 | . . . . 5 | |
73 | 72 | adantl 275 | . . . 4 |
74 | 67, 71, 73 | seq3-1 10416 | . . 3 |
75 | 74, 44 | eqtrd 2203 | . 2 |
76 | 66, 75 | breqtrd 4015 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 wceq 1348 wcel 2141 wne 2340 wss 3121 cif 3526 csn 3583 class class class wbr 3989 cmpt 4050 cfv 5198 (class class class)co 5853 cc 7772 cc0 7774 c1 7775 caddc 7777 cdiv 8589 cn 8878 cn0 9135 cz 9212 cuz 9487 cfz 9965 cseq 10401 cexp 10475 cfa 10659 cli 11241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-fz 9966 df-seqfrec 10402 df-exp 10476 df-fac 10660 df-cj 10806 df-rsqrt 10962 df-abs 10963 df-clim 11242 |
This theorem is referenced by: ef0 11635 |
Copyright terms: Public domain | W3C validator |