ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef0lem Unicode version

Theorem ef0lem 11403
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcllem.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
ef0lem  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  1 )
Distinct variable group:    A, n
Allowed substitution hint:    F( n)

Proof of Theorem ef0lem
Dummy variables  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
k  e.  ( ZZ>= ` 
0 ) )
2 nn0uz 9384 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
31, 2eleqtrrdi 2234 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
k  e.  NN0 )
4 elnn0 9003 . . . . 5  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
53, 4sylib 121 . . . 4  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( k  e.  NN  \/  k  =  0
) )
6 0cnd 7783 . . . . . . . . 9  |-  ( A  =  0  ->  0  e.  CC )
7 eleq1 2203 . . . . . . . . 9  |-  ( A  =  0  ->  ( A  e.  CC  <->  0  e.  CC ) )
86, 7mpbird 166 . . . . . . . 8  |-  ( A  =  0  ->  A  e.  CC )
9 nnnn0 9008 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  NN0 )
109adantl 275 . . . . . . . 8  |-  ( ( A  =  0  /\  k  e.  NN )  ->  k  e.  NN0 )
11 efcllem.1 . . . . . . . . 9  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
1211eftvalcn 11400 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
138, 10, 12syl2an2r 585 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
14 oveq1 5789 . . . . . . . . 9  |-  ( A  =  0  ->  ( A ^ k )  =  ( 0 ^ k
) )
15 0exp 10359 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
0 ^ k )  =  0 )
1614, 15sylan9eq 2193 . . . . . . . 8  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( A ^
k )  =  0 )
1716oveq1d 5797 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( ( A ^ k )  / 
( ! `  k
) )  =  ( 0  /  ( ! `
 k ) ) )
18 faccl 10513 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
19 nncn 8752 . . . . . . . . 9  |-  ( ( ! `  k )  e.  NN  ->  ( ! `  k )  e.  CC )
20 nnap0 8773 . . . . . . . . 9  |-  ( ( ! `  k )  e.  NN  ->  ( ! `  k ) #  0 )
2119, 20div0apd 8571 . . . . . . . 8  |-  ( ( ! `  k )  e.  NN  ->  (
0  /  ( ! `
 k ) )  =  0 )
2210, 18, 213syl 17 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( 0  / 
( ! `  k
) )  =  0 )
2313, 17, 223eqtrd 2177 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  0 )
24 nnne0 8772 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  =/=  0 )
25 velsn 3549 . . . . . . . . . 10  |-  ( k  e.  { 0 }  <-> 
k  =  0 )
2625necon3bbii 2346 . . . . . . . . 9  |-  ( -.  k  e.  { 0 }  <->  k  =/=  0
)
2724, 26sylibr 133 . . . . . . . 8  |-  ( k  e.  NN  ->  -.  k  e.  { 0 } )
2827adantl 275 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  -.  k  e.  { 0 } )
2928iffalsed 3489 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  NN )  ->  if ( k  e.  { 0 } ,  1 ,  0 )  =  0 )
3023, 29eqtr4d 2176 . . . . 5  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  if ( k  e.  {
0 } ,  1 ,  0 ) )
31 fveq2 5429 . . . . . . 7  |-  ( k  =  0  ->  ( F `  k )  =  ( F ` 
0 ) )
32 0nn0 9016 . . . . . . . . . 10  |-  0  e.  NN0
3311eftvalcn 11400 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  e.  NN0 )  -> 
( F `  0
)  =  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )
348, 32, 33sylancl 410 . . . . . . . . 9  |-  ( A  =  0  ->  ( F `  0 )  =  ( ( A ^ 0 )  / 
( ! `  0
) ) )
35 oveq1 5789 . . . . . . . . . . 11  |-  ( A  =  0  ->  ( A ^ 0 )  =  ( 0 ^ 0 ) )
36 0exp0e1 10329 . . . . . . . . . . 11  |-  ( 0 ^ 0 )  =  1
3735, 36eqtrdi 2189 . . . . . . . . . 10  |-  ( A  =  0  ->  ( A ^ 0 )  =  1 )
3837oveq1d 5797 . . . . . . . . 9  |-  ( A  =  0  ->  (
( A ^ 0 )  /  ( ! `
 0 ) )  =  ( 1  / 
( ! `  0
) ) )
3934, 38eqtrd 2173 . . . . . . . 8  |-  ( A  =  0  ->  ( F `  0 )  =  ( 1  / 
( ! `  0
) ) )
40 fac0 10506 . . . . . . . . . 10  |-  ( ! `
 0 )  =  1
4140oveq2i 5793 . . . . . . . . 9  |-  ( 1  /  ( ! ` 
0 ) )  =  ( 1  /  1
)
42 1div1e1 8488 . . . . . . . . 9  |-  ( 1  /  1 )  =  1
4341, 42eqtr2i 2162 . . . . . . . 8  |-  1  =  ( 1  / 
( ! `  0
) )
4439, 43eqtr4di 2191 . . . . . . 7  |-  ( A  =  0  ->  ( F `  0 )  =  1 )
4531, 44sylan9eqr 2195 . . . . . 6  |-  ( ( A  =  0  /\  k  =  0 )  ->  ( F `  k )  =  1 )
46 simpr 109 . . . . . . . 8  |-  ( ( A  =  0  /\  k  =  0 )  ->  k  =  0 )
4746, 25sylibr 133 . . . . . . 7  |-  ( ( A  =  0  /\  k  =  0 )  ->  k  e.  {
0 } )
4847iftrued 3486 . . . . . 6  |-  ( ( A  =  0  /\  k  =  0 )  ->  if ( k  e.  { 0 } ,  1 ,  0 )  =  1 )
4945, 48eqtr4d 2176 . . . . 5  |-  ( ( A  =  0  /\  k  =  0 )  ->  ( F `  k )  =  if ( k  e.  {
0 } ,  1 ,  0 ) )
5030, 49jaodan 787 . . . 4  |-  ( ( A  =  0  /\  ( k  e.  NN  \/  k  =  0
) )  ->  ( F `  k )  =  if ( k  e. 
{ 0 } , 
1 ,  0 ) )
515, 50syldan 280 . . 3  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( F `  k
)  =  if ( k  e.  { 0 } ,  1 ,  0 ) )
5232, 2eleqtri 2215 . . . 4  |-  0  e.  ( ZZ>= `  0 )
5352a1i 9 . . 3  |-  ( A  =  0  ->  0  e.  ( ZZ>= `  0 )
)
54 1cnd 7806 . . 3  |-  ( ( A  =  0  /\  k  e.  { 0 } )  ->  1  e.  CC )
5525biimpri 132 . . . . . . 7  |-  ( k  =  0  ->  k  e.  { 0 } )
5627, 55orim12i 749 . . . . . 6  |-  ( ( k  e.  NN  \/  k  =  0 )  ->  ( -.  k  e.  { 0 }  \/  k  e.  { 0 } ) )
575, 56syl 14 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( -.  k  e. 
{ 0 }  \/  k  e.  { 0 } ) )
5857orcomd 719 . . . 4  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( k  e.  {
0 }  \/  -.  k  e.  { 0 } ) )
59 df-dc 821 . . . 4  |-  (DECID  k  e. 
{ 0 }  <->  ( k  e.  { 0 }  \/  -.  k  e.  { 0 } ) )
6058, 59sylibr 133 . . 3  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> DECID  k  e.  { 0 } )
61 0z 9089 . . . . . 6  |-  0  e.  ZZ
62 fzsn 9877 . . . . . 6  |-  ( 0  e.  ZZ  ->  (
0 ... 0 )  =  { 0 } )
6361, 62ax-mp 5 . . . . 5  |-  ( 0 ... 0 )  =  { 0 }
6463eqimss2i 3159 . . . 4  |-  { 0 }  C_  ( 0 ... 0 )
6564a1i 9 . . 3  |-  ( A  =  0  ->  { 0 }  C_  ( 0 ... 0 ) )
6651, 53, 54, 60, 65fsum3cvg2 11195 . 2  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  (  seq 0 (  +  ,  F ) `  0
) )
6761a1i 9 . . . 4  |-  ( A  =  0  ->  0  e.  ZZ )
688, 3, 12syl2an2r 585 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
69 eftcl 11397 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
708, 3, 69syl2an2r 585 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
7168, 70eqeltrd 2217 . . . 4  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( F `  k
)  e.  CC )
72 addcl 7769 . . . . 5  |-  ( ( k  e.  CC  /\  y  e.  CC )  ->  ( k  +  y )  e.  CC )
7372adantl 275 . . . 4  |-  ( ( A  =  0  /\  ( k  e.  CC  /\  y  e.  CC ) )  ->  ( k  +  y )  e.  CC )
7467, 71, 73seq3-1 10264 . . 3  |-  ( A  =  0  ->  (  seq 0 (  +  ,  F ) `  0
)  =  ( F `
 0 ) )
7574, 44eqtrd 2173 . 2  |-  ( A  =  0  ->  (  seq 0 (  +  ,  F ) `  0
)  =  1 )
7666, 75breqtrd 3962 1  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    = wceq 1332    e. wcel 1481    =/= wne 2309    C_ wss 3076   ifcif 3479   {csn 3532   class class class wbr 3937    |-> cmpt 3997   ` cfv 5131  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647    / cdiv 8456   NNcn 8744   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821    seqcseq 10249   ^cexp 10323   !cfa 10503    ~~> cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-fz 9822  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-cj 10646  df-rsqrt 10802  df-abs 10803  df-clim 11080
This theorem is referenced by:  ef0  11415
  Copyright terms: Public domain W3C validator