Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ef0lem | Unicode version |
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
efcllem.1 |
Ref | Expression |
---|---|
ef0lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . . 6 | |
2 | nn0uz 9456 | . . . . . 6 | |
3 | 1, 2 | eleqtrrdi 2251 | . . . . 5 |
4 | elnn0 9075 | . . . . 5 | |
5 | 3, 4 | sylib 121 | . . . 4 |
6 | 0cnd 7854 | . . . . . . . . 9 | |
7 | eleq1 2220 | . . . . . . . . 9 | |
8 | 6, 7 | mpbird 166 | . . . . . . . 8 |
9 | nnnn0 9080 | . . . . . . . . 9 | |
10 | 9 | adantl 275 | . . . . . . . 8 |
11 | efcllem.1 | . . . . . . . . 9 | |
12 | 11 | eftvalcn 11536 | . . . . . . . 8 |
13 | 8, 10, 12 | syl2an2r 585 | . . . . . . 7 |
14 | oveq1 5825 | . . . . . . . . 9 | |
15 | 0exp 10436 | . . . . . . . . 9 | |
16 | 14, 15 | sylan9eq 2210 | . . . . . . . 8 |
17 | 16 | oveq1d 5833 | . . . . . . 7 |
18 | faccl 10591 | . . . . . . . 8 | |
19 | nncn 8824 | . . . . . . . . 9 | |
20 | nnap0 8845 | . . . . . . . . 9 # | |
21 | 19, 20 | div0apd 8643 | . . . . . . . 8 |
22 | 10, 18, 21 | 3syl 17 | . . . . . . 7 |
23 | 13, 17, 22 | 3eqtrd 2194 | . . . . . 6 |
24 | nnne0 8844 | . . . . . . . . 9 | |
25 | velsn 3577 | . . . . . . . . . 10 | |
26 | 25 | necon3bbii 2364 | . . . . . . . . 9 |
27 | 24, 26 | sylibr 133 | . . . . . . . 8 |
28 | 27 | adantl 275 | . . . . . . 7 |
29 | 28 | iffalsed 3515 | . . . . . 6 |
30 | 23, 29 | eqtr4d 2193 | . . . . 5 |
31 | fveq2 5465 | . . . . . . 7 | |
32 | 0nn0 9088 | . . . . . . . . . 10 | |
33 | 11 | eftvalcn 11536 | . . . . . . . . . 10 |
34 | 8, 32, 33 | sylancl 410 | . . . . . . . . 9 |
35 | oveq1 5825 | . . . . . . . . . . 11 | |
36 | 0exp0e1 10406 | . . . . . . . . . . 11 | |
37 | 35, 36 | eqtrdi 2206 | . . . . . . . . . 10 |
38 | 37 | oveq1d 5833 | . . . . . . . . 9 |
39 | 34, 38 | eqtrd 2190 | . . . . . . . 8 |
40 | fac0 10584 | . . . . . . . . . 10 | |
41 | 40 | oveq2i 5829 | . . . . . . . . 9 |
42 | 1div1e1 8560 | . . . . . . . . 9 | |
43 | 41, 42 | eqtr2i 2179 | . . . . . . . 8 |
44 | 39, 43 | eqtr4di 2208 | . . . . . . 7 |
45 | 31, 44 | sylan9eqr 2212 | . . . . . 6 |
46 | simpr 109 | . . . . . . . 8 | |
47 | 46, 25 | sylibr 133 | . . . . . . 7 |
48 | 47 | iftrued 3512 | . . . . . 6 |
49 | 45, 48 | eqtr4d 2193 | . . . . 5 |
50 | 30, 49 | jaodan 787 | . . . 4 |
51 | 5, 50 | syldan 280 | . . 3 |
52 | 32, 2 | eleqtri 2232 | . . . 4 |
53 | 52 | a1i 9 | . . 3 |
54 | 1cnd 7877 | . . 3 | |
55 | 25 | biimpri 132 | . . . . . . 7 |
56 | 27, 55 | orim12i 749 | . . . . . 6 |
57 | 5, 56 | syl 14 | . . . . 5 |
58 | 57 | orcomd 719 | . . . 4 |
59 | df-dc 821 | . . . 4 DECID | |
60 | 58, 59 | sylibr 133 | . . 3 DECID |
61 | 0z 9161 | . . . . . 6 | |
62 | fzsn 9950 | . . . . . 6 | |
63 | 61, 62 | ax-mp 5 | . . . . 5 |
64 | 63 | eqimss2i 3185 | . . . 4 |
65 | 64 | a1i 9 | . . 3 |
66 | 51, 53, 54, 60, 65 | fsum3cvg2 11273 | . 2 |
67 | 61 | a1i 9 | . . . 4 |
68 | 8, 3, 12 | syl2an2r 585 | . . . . 5 |
69 | eftcl 11533 | . . . . . 6 | |
70 | 8, 3, 69 | syl2an2r 585 | . . . . 5 |
71 | 68, 70 | eqeltrd 2234 | . . . 4 |
72 | addcl 7840 | . . . . 5 | |
73 | 72 | adantl 275 | . . . 4 |
74 | 67, 71, 73 | seq3-1 10341 | . . 3 |
75 | 74, 44 | eqtrd 2190 | . 2 |
76 | 66, 75 | breqtrd 3990 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 820 wceq 1335 wcel 2128 wne 2327 wss 3102 cif 3505 csn 3560 class class class wbr 3965 cmpt 4025 cfv 5167 (class class class)co 5818 cc 7713 cc0 7715 c1 7716 caddc 7718 cdiv 8528 cn 8816 cn0 9073 cz 9150 cuz 9422 cfz 9894 cseq 10326 cexp 10400 cfa 10581 cli 11157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-ilim 4328 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-frec 6332 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-2 8875 df-n0 9074 df-z 9151 df-uz 9423 df-rp 9543 df-fz 9895 df-seqfrec 10327 df-exp 10401 df-fac 10582 df-cj 10724 df-rsqrt 10880 df-abs 10881 df-clim 11158 |
This theorem is referenced by: ef0 11551 |
Copyright terms: Public domain | W3C validator |