| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ef0lem | Unicode version | ||
| Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| Ref | Expression |
|---|---|
| efcllem.1 |
|
| Ref | Expression |
|---|---|
| ef0lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | nn0uz 9718 |
. . . . . 6
| |
| 3 | 1, 2 | eleqtrrdi 2301 |
. . . . 5
|
| 4 | elnn0 9332 |
. . . . 5
| |
| 5 | 3, 4 | sylib 122 |
. . . 4
|
| 6 | 0cnd 8100 |
. . . . . . . . 9
| |
| 7 | eleq1 2270 |
. . . . . . . . 9
| |
| 8 | 6, 7 | mpbird 167 |
. . . . . . . 8
|
| 9 | nnnn0 9337 |
. . . . . . . . 9
| |
| 10 | 9 | adantl 277 |
. . . . . . . 8
|
| 11 | efcllem.1 |
. . . . . . . . 9
| |
| 12 | 11 | eftvalcn 12083 |
. . . . . . . 8
|
| 13 | 8, 10, 12 | syl2an2r 595 |
. . . . . . 7
|
| 14 | oveq1 5974 |
. . . . . . . . 9
| |
| 15 | 0exp 10756 |
. . . . . . . . 9
| |
| 16 | 14, 15 | sylan9eq 2260 |
. . . . . . . 8
|
| 17 | 16 | oveq1d 5982 |
. . . . . . 7
|
| 18 | faccl 10917 |
. . . . . . . 8
| |
| 19 | nncn 9079 |
. . . . . . . . 9
| |
| 20 | nnap0 9100 |
. . . . . . . . 9
| |
| 21 | 19, 20 | div0apd 8895 |
. . . . . . . 8
|
| 22 | 10, 18, 21 | 3syl 17 |
. . . . . . 7
|
| 23 | 13, 17, 22 | 3eqtrd 2244 |
. . . . . 6
|
| 24 | nnne0 9099 |
. . . . . . . . 9
| |
| 25 | velsn 3660 |
. . . . . . . . . 10
| |
| 26 | 25 | necon3bbii 2415 |
. . . . . . . . 9
|
| 27 | 24, 26 | sylibr 134 |
. . . . . . . 8
|
| 28 | 27 | adantl 277 |
. . . . . . 7
|
| 29 | 28 | iffalsed 3589 |
. . . . . 6
|
| 30 | 23, 29 | eqtr4d 2243 |
. . . . 5
|
| 31 | fveq2 5599 |
. . . . . . 7
| |
| 32 | 0nn0 9345 |
. . . . . . . . . 10
| |
| 33 | 11 | eftvalcn 12083 |
. . . . . . . . . 10
|
| 34 | 8, 32, 33 | sylancl 413 |
. . . . . . . . 9
|
| 35 | oveq1 5974 |
. . . . . . . . . . 11
| |
| 36 | 0exp0e1 10726 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | eqtrdi 2256 |
. . . . . . . . . 10
|
| 38 | 37 | oveq1d 5982 |
. . . . . . . . 9
|
| 39 | 34, 38 | eqtrd 2240 |
. . . . . . . 8
|
| 40 | fac0 10910 |
. . . . . . . . . 10
| |
| 41 | 40 | oveq2i 5978 |
. . . . . . . . 9
|
| 42 | 1div1e1 8812 |
. . . . . . . . 9
| |
| 43 | 41, 42 | eqtr2i 2229 |
. . . . . . . 8
|
| 44 | 39, 43 | eqtr4di 2258 |
. . . . . . 7
|
| 45 | 31, 44 | sylan9eqr 2262 |
. . . . . 6
|
| 46 | simpr 110 |
. . . . . . . 8
| |
| 47 | 46, 25 | sylibr 134 |
. . . . . . 7
|
| 48 | 47 | iftrued 3586 |
. . . . . 6
|
| 49 | 45, 48 | eqtr4d 2243 |
. . . . 5
|
| 50 | 30, 49 | jaodan 799 |
. . . 4
|
| 51 | 5, 50 | syldan 282 |
. . 3
|
| 52 | 32, 2 | eleqtri 2282 |
. . . 4
|
| 53 | 52 | a1i 9 |
. . 3
|
| 54 | 1cnd 8123 |
. . 3
| |
| 55 | 25 | biimpri 133 |
. . . . . . 7
|
| 56 | 27, 55 | orim12i 761 |
. . . . . 6
|
| 57 | 5, 56 | syl 14 |
. . . . 5
|
| 58 | 57 | orcomd 731 |
. . . 4
|
| 59 | df-dc 837 |
. . . 4
| |
| 60 | 58, 59 | sylibr 134 |
. . 3
|
| 61 | 0z 9418 |
. . . . . 6
| |
| 62 | fzsn 10223 |
. . . . . 6
| |
| 63 | 61, 62 | ax-mp 5 |
. . . . 5
|
| 64 | 63 | eqimss2i 3258 |
. . . 4
|
| 65 | 64 | a1i 9 |
. . 3
|
| 66 | 51, 53, 54, 60, 65 | fsum3cvg2 11820 |
. 2
|
| 67 | 61 | a1i 9 |
. . . 4
|
| 68 | 8, 3, 12 | syl2an2r 595 |
. . . . 5
|
| 69 | eftcl 12080 |
. . . . . 6
| |
| 70 | 8, 3, 69 | syl2an2r 595 |
. . . . 5
|
| 71 | 68, 70 | eqeltrd 2284 |
. . . 4
|
| 72 | addcl 8085 |
. . . . 5
| |
| 73 | 72 | adantl 277 |
. . . 4
|
| 74 | 67, 71, 73 | seq3-1 10644 |
. . 3
|
| 75 | 74, 44 | eqtrd 2240 |
. 2
|
| 76 | 66, 75 | breqtrd 4085 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 df-rp 9811 df-fz 10166 df-seqfrec 10630 df-exp 10721 df-fac 10908 df-cj 11268 df-rsqrt 11424 df-abs 11425 df-clim 11705 |
| This theorem is referenced by: ef0 12098 |
| Copyright terms: Public domain | W3C validator |