ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef0lem Unicode version

Theorem ef0lem 11539
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcllem.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
ef0lem  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  1 )
Distinct variable group:    A, n
Allowed substitution hint:    F( n)

Proof of Theorem ef0lem
Dummy variables  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
k  e.  ( ZZ>= ` 
0 ) )
2 nn0uz 9456 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
31, 2eleqtrrdi 2251 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
k  e.  NN0 )
4 elnn0 9075 . . . . 5  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
53, 4sylib 121 . . . 4  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( k  e.  NN  \/  k  =  0
) )
6 0cnd 7854 . . . . . . . . 9  |-  ( A  =  0  ->  0  e.  CC )
7 eleq1 2220 . . . . . . . . 9  |-  ( A  =  0  ->  ( A  e.  CC  <->  0  e.  CC ) )
86, 7mpbird 166 . . . . . . . 8  |-  ( A  =  0  ->  A  e.  CC )
9 nnnn0 9080 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  NN0 )
109adantl 275 . . . . . . . 8  |-  ( ( A  =  0  /\  k  e.  NN )  ->  k  e.  NN0 )
11 efcllem.1 . . . . . . . . 9  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
1211eftvalcn 11536 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
138, 10, 12syl2an2r 585 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
14 oveq1 5825 . . . . . . . . 9  |-  ( A  =  0  ->  ( A ^ k )  =  ( 0 ^ k
) )
15 0exp 10436 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
0 ^ k )  =  0 )
1614, 15sylan9eq 2210 . . . . . . . 8  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( A ^
k )  =  0 )
1716oveq1d 5833 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( ( A ^ k )  / 
( ! `  k
) )  =  ( 0  /  ( ! `
 k ) ) )
18 faccl 10591 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
19 nncn 8824 . . . . . . . . 9  |-  ( ( ! `  k )  e.  NN  ->  ( ! `  k )  e.  CC )
20 nnap0 8845 . . . . . . . . 9  |-  ( ( ! `  k )  e.  NN  ->  ( ! `  k ) #  0 )
2119, 20div0apd 8643 . . . . . . . 8  |-  ( ( ! `  k )  e.  NN  ->  (
0  /  ( ! `
 k ) )  =  0 )
2210, 18, 213syl 17 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( 0  / 
( ! `  k
) )  =  0 )
2313, 17, 223eqtrd 2194 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  0 )
24 nnne0 8844 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  =/=  0 )
25 velsn 3577 . . . . . . . . . 10  |-  ( k  e.  { 0 }  <-> 
k  =  0 )
2625necon3bbii 2364 . . . . . . . . 9  |-  ( -.  k  e.  { 0 }  <->  k  =/=  0
)
2724, 26sylibr 133 . . . . . . . 8  |-  ( k  e.  NN  ->  -.  k  e.  { 0 } )
2827adantl 275 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  -.  k  e.  { 0 } )
2928iffalsed 3515 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  NN )  ->  if ( k  e.  { 0 } ,  1 ,  0 )  =  0 )
3023, 29eqtr4d 2193 . . . . 5  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  if ( k  e.  {
0 } ,  1 ,  0 ) )
31 fveq2 5465 . . . . . . 7  |-  ( k  =  0  ->  ( F `  k )  =  ( F ` 
0 ) )
32 0nn0 9088 . . . . . . . . . 10  |-  0  e.  NN0
3311eftvalcn 11536 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  e.  NN0 )  -> 
( F `  0
)  =  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )
348, 32, 33sylancl 410 . . . . . . . . 9  |-  ( A  =  0  ->  ( F `  0 )  =  ( ( A ^ 0 )  / 
( ! `  0
) ) )
35 oveq1 5825 . . . . . . . . . . 11  |-  ( A  =  0  ->  ( A ^ 0 )  =  ( 0 ^ 0 ) )
36 0exp0e1 10406 . . . . . . . . . . 11  |-  ( 0 ^ 0 )  =  1
3735, 36eqtrdi 2206 . . . . . . . . . 10  |-  ( A  =  0  ->  ( A ^ 0 )  =  1 )
3837oveq1d 5833 . . . . . . . . 9  |-  ( A  =  0  ->  (
( A ^ 0 )  /  ( ! `
 0 ) )  =  ( 1  / 
( ! `  0
) ) )
3934, 38eqtrd 2190 . . . . . . . 8  |-  ( A  =  0  ->  ( F `  0 )  =  ( 1  / 
( ! `  0
) ) )
40 fac0 10584 . . . . . . . . . 10  |-  ( ! `
 0 )  =  1
4140oveq2i 5829 . . . . . . . . 9  |-  ( 1  /  ( ! ` 
0 ) )  =  ( 1  /  1
)
42 1div1e1 8560 . . . . . . . . 9  |-  ( 1  /  1 )  =  1
4341, 42eqtr2i 2179 . . . . . . . 8  |-  1  =  ( 1  / 
( ! `  0
) )
4439, 43eqtr4di 2208 . . . . . . 7  |-  ( A  =  0  ->  ( F `  0 )  =  1 )
4531, 44sylan9eqr 2212 . . . . . 6  |-  ( ( A  =  0  /\  k  =  0 )  ->  ( F `  k )  =  1 )
46 simpr 109 . . . . . . . 8  |-  ( ( A  =  0  /\  k  =  0 )  ->  k  =  0 )
4746, 25sylibr 133 . . . . . . 7  |-  ( ( A  =  0  /\  k  =  0 )  ->  k  e.  {
0 } )
4847iftrued 3512 . . . . . 6  |-  ( ( A  =  0  /\  k  =  0 )  ->  if ( k  e.  { 0 } ,  1 ,  0 )  =  1 )
4945, 48eqtr4d 2193 . . . . 5  |-  ( ( A  =  0  /\  k  =  0 )  ->  ( F `  k )  =  if ( k  e.  {
0 } ,  1 ,  0 ) )
5030, 49jaodan 787 . . . 4  |-  ( ( A  =  0  /\  ( k  e.  NN  \/  k  =  0
) )  ->  ( F `  k )  =  if ( k  e. 
{ 0 } , 
1 ,  0 ) )
515, 50syldan 280 . . 3  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( F `  k
)  =  if ( k  e.  { 0 } ,  1 ,  0 ) )
5232, 2eleqtri 2232 . . . 4  |-  0  e.  ( ZZ>= `  0 )
5352a1i 9 . . 3  |-  ( A  =  0  ->  0  e.  ( ZZ>= `  0 )
)
54 1cnd 7877 . . 3  |-  ( ( A  =  0  /\  k  e.  { 0 } )  ->  1  e.  CC )
5525biimpri 132 . . . . . . 7  |-  ( k  =  0  ->  k  e.  { 0 } )
5627, 55orim12i 749 . . . . . 6  |-  ( ( k  e.  NN  \/  k  =  0 )  ->  ( -.  k  e.  { 0 }  \/  k  e.  { 0 } ) )
575, 56syl 14 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( -.  k  e. 
{ 0 }  \/  k  e.  { 0 } ) )
5857orcomd 719 . . . 4  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( k  e.  {
0 }  \/  -.  k  e.  { 0 } ) )
59 df-dc 821 . . . 4  |-  (DECID  k  e. 
{ 0 }  <->  ( k  e.  { 0 }  \/  -.  k  e.  { 0 } ) )
6058, 59sylibr 133 . . 3  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> DECID  k  e.  { 0 } )
61 0z 9161 . . . . . 6  |-  0  e.  ZZ
62 fzsn 9950 . . . . . 6  |-  ( 0  e.  ZZ  ->  (
0 ... 0 )  =  { 0 } )
6361, 62ax-mp 5 . . . . 5  |-  ( 0 ... 0 )  =  { 0 }
6463eqimss2i 3185 . . . 4  |-  { 0 }  C_  ( 0 ... 0 )
6564a1i 9 . . 3  |-  ( A  =  0  ->  { 0 }  C_  ( 0 ... 0 ) )
6651, 53, 54, 60, 65fsum3cvg2 11273 . 2  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  (  seq 0 (  +  ,  F ) `  0
) )
6761a1i 9 . . . 4  |-  ( A  =  0  ->  0  e.  ZZ )
688, 3, 12syl2an2r 585 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
69 eftcl 11533 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
708, 3, 69syl2an2r 585 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
7168, 70eqeltrd 2234 . . . 4  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( F `  k
)  e.  CC )
72 addcl 7840 . . . . 5  |-  ( ( k  e.  CC  /\  y  e.  CC )  ->  ( k  +  y )  e.  CC )
7372adantl 275 . . . 4  |-  ( ( A  =  0  /\  ( k  e.  CC  /\  y  e.  CC ) )  ->  ( k  +  y )  e.  CC )
7467, 71, 73seq3-1 10341 . . 3  |-  ( A  =  0  ->  (  seq 0 (  +  ,  F ) `  0
)  =  ( F `
 0 ) )
7574, 44eqtrd 2190 . 2  |-  ( A  =  0  ->  (  seq 0 (  +  ,  F ) `  0
)  =  1 )
7666, 75breqtrd 3990 1  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    = wceq 1335    e. wcel 2128    =/= wne 2327    C_ wss 3102   ifcif 3505   {csn 3560   class class class wbr 3965    |-> cmpt 4025   ` cfv 5167  (class class class)co 5818   CCcc 7713   0cc0 7715   1c1 7716    + caddc 7718    / cdiv 8528   NNcn 8816   NN0cn0 9073   ZZcz 9150   ZZ>=cuz 9422   ...cfz 9894    seqcseq 10326   ^cexp 10400   !cfa 10581    ~~> cli 11157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-n0 9074  df-z 9151  df-uz 9423  df-rp 9543  df-fz 9895  df-seqfrec 10327  df-exp 10401  df-fac 10582  df-cj 10724  df-rsqrt 10880  df-abs 10881  df-clim 11158
This theorem is referenced by:  ef0  11551
  Copyright terms: Public domain W3C validator