ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0to4untppr Unicode version

Theorem fz0to4untppr 10199
Description: An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
Assertion
Ref Expression
fz0to4untppr  |-  ( 0 ... 4 )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )

Proof of Theorem fz0to4untppr
StepHypRef Expression
1 df-3 9050 . . . . 5  |-  3  =  ( 2  +  1 )
2 2cn 9061 . . . . . . . 8  |-  2  e.  CC
32addlidi 8169 . . . . . . 7  |-  ( 0  +  2 )  =  2
43eqcomi 2200 . . . . . 6  |-  2  =  ( 0  +  2 )
54oveq1i 5932 . . . . 5  |-  ( 2  +  1 )  =  ( ( 0  +  2 )  +  1 )
61, 5eqtri 2217 . . . 4  |-  3  =  ( ( 0  +  2 )  +  1 )
7 3z 9355 . . . . 5  |-  3  e.  ZZ
8 0re 8026 . . . . . 6  |-  0  e.  RR
9 3re 9064 . . . . . 6  |-  3  e.  RR
10 3pos 9084 . . . . . 6  |-  0  <  3
118, 9, 10ltleii 8129 . . . . 5  |-  0  <_  3
12 0z 9337 . . . . . 6  |-  0  e.  ZZ
1312eluz1i 9608 . . . . 5  |-  ( 3  e.  ( ZZ>= `  0
)  <->  ( 3  e.  ZZ  /\  0  <_ 
3 ) )
147, 11, 13mpbir2an 944 . . . 4  |-  3  e.  ( ZZ>= `  0 )
156, 14eqeltrri 2270 . . 3  |-  ( ( 0  +  2 )  +  1 )  e.  ( ZZ>= `  0 )
16 4z 9356 . . . . 5  |-  4  e.  ZZ
17 2re 9060 . . . . . 6  |-  2  e.  RR
18 4re 9067 . . . . . 6  |-  4  e.  RR
19 2lt4 9164 . . . . . 6  |-  2  <  4
2017, 18, 19ltleii 8129 . . . . 5  |-  2  <_  4
21 2z 9354 . . . . . 6  |-  2  e.  ZZ
2221eluz1i 9608 . . . . 5  |-  ( 4  e.  ( ZZ>= `  2
)  <->  ( 4  e.  ZZ  /\  2  <_ 
4 ) )
2316, 20, 22mpbir2an 944 . . . 4  |-  4  e.  ( ZZ>= `  2 )
244fveq2i 5561 . . . 4  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 0  +  2 ) )
2523, 24eleqtri 2271 . . 3  |-  4  e.  ( ZZ>= `  ( 0  +  2 ) )
26 fzsplit2 10125 . . 3  |-  ( ( ( ( 0  +  2 )  +  1 )  e.  ( ZZ>= ` 
0 )  /\  4  e.  ( ZZ>= `  ( 0  +  2 ) ) )  ->  ( 0 ... 4 )  =  ( ( 0 ... ( 0  +  2 ) )  u.  (
( ( 0  +  2 )  +  1 ) ... 4 ) ) )
2715, 25, 26mp2an 426 . 2  |-  ( 0 ... 4 )  =  ( ( 0 ... ( 0  +  2 ) )  u.  (
( ( 0  +  2 )  +  1 ) ... 4 ) )
28 fztp 10153 . . . . 5  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  2 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } )
2912, 28ax-mp 5 . . . 4  |-  ( 0 ... ( 0  +  2 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }
30 ax-1cn 7972 . . . . 5  |-  1  e.  CC
31 eqidd 2197 . . . . . 6  |-  ( 1  e.  CC  ->  0  =  0 )
32 addlid 8165 . . . . . 6  |-  ( 1  e.  CC  ->  (
0  +  1 )  =  1 )
333a1i 9 . . . . . 6  |-  ( 1  e.  CC  ->  (
0  +  2 )  =  2 )
3431, 32, 33tpeq123d 3714 . . . . 5  |-  ( 1  e.  CC  ->  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }  =  { 0 ,  1 ,  2 } )
3530, 34ax-mp 5 . . . 4  |-  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }  =  { 0 ,  1 ,  2 }
3629, 35eqtri 2217 . . 3  |-  ( 0 ... ( 0  +  2 ) )  =  { 0 ,  1 ,  2 }
373a1i 9 . . . . . . . 8  |-  ( 3  e.  ZZ  ->  (
0  +  2 )  =  2 )
3837oveq1d 5937 . . . . . . 7  |-  ( 3  e.  ZZ  ->  (
( 0  +  2 )  +  1 )  =  ( 2  +  1 ) )
3938, 1eqtr4di 2247 . . . . . 6  |-  ( 3  e.  ZZ  ->  (
( 0  +  2 )  +  1 )  =  3 )
4039oveq1d 5937 . . . . 5  |-  ( 3  e.  ZZ  ->  (
( ( 0  +  2 )  +  1 ) ... 4 )  =  ( 3 ... 4 ) )
41 eqid 2196 . . . . . . . . . 10  |-  3  =  3
42 df-4 9051 . . . . . . . . . 10  |-  4  =  ( 3  +  1 )
4341, 42pm3.2i 272 . . . . . . . . 9  |-  ( 3  =  3  /\  4  =  ( 3  +  1 ) )
4443a1i 9 . . . . . . . 8  |-  ( 3  e.  ZZ  ->  (
3  =  3  /\  4  =  ( 3  +  1 ) ) )
45 3lt4 9163 . . . . . . . . . . 11  |-  3  <  4
469, 18, 45ltleii 8129 . . . . . . . . . 10  |-  3  <_  4
477eluz1i 9608 . . . . . . . . . 10  |-  ( 4  e.  ( ZZ>= `  3
)  <->  ( 4  e.  ZZ  /\  3  <_ 
4 ) )
4816, 46, 47mpbir2an 944 . . . . . . . . 9  |-  4  e.  ( ZZ>= `  3 )
49 fzopth 10136 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  3
)  ->  ( (
3 ... 4 )  =  ( 3 ... (
3  +  1 ) )  <->  ( 3  =  3  /\  4  =  ( 3  +  1 ) ) ) )
5048, 49ax-mp 5 . . . . . . . 8  |-  ( ( 3 ... 4 )  =  ( 3 ... ( 3  +  1 ) )  <->  ( 3  =  3  /\  4  =  ( 3  +  1 ) ) )
5144, 50sylibr 134 . . . . . . 7  |-  ( 3  e.  ZZ  ->  (
3 ... 4 )  =  ( 3 ... (
3  +  1 ) ) )
52 fzpr 10152 . . . . . . 7  |-  ( 3  e.  ZZ  ->  (
3 ... ( 3  +  1 ) )  =  { 3 ,  ( 3  +  1 ) } )
5351, 52eqtrd 2229 . . . . . 6  |-  ( 3  e.  ZZ  ->  (
3 ... 4 )  =  { 3 ,  ( 3  +  1 ) } )
5442eqcomi 2200 . . . . . . 7  |-  ( 3  +  1 )  =  4
5554preq2i 3703 . . . . . 6  |-  { 3 ,  ( 3  +  1 ) }  =  { 3 ,  4 }
5653, 55eqtrdi 2245 . . . . 5  |-  ( 3  e.  ZZ  ->  (
3 ... 4 )  =  { 3 ,  4 } )
5740, 56eqtrd 2229 . . . 4  |-  ( 3  e.  ZZ  ->  (
( ( 0  +  2 )  +  1 ) ... 4 )  =  { 3 ,  4 } )
587, 57ax-mp 5 . . 3  |-  ( ( ( 0  +  2 )  +  1 ) ... 4 )  =  { 3 ,  4 }
5936, 58uneq12i 3315 . 2  |-  ( ( 0 ... ( 0  +  2 ) )  u.  ( ( ( 0  +  2 )  +  1 ) ... 4 ) )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )
6027, 59eqtri 2217 1  |-  ( 0 ... 4 )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    u. cun 3155   {cpr 3623   {ctp 3624   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    <_ cle 8062   2c2 9041   3c3 9042   4c4 9043   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084
This theorem is referenced by:  prm23lt5  12432
  Copyright terms: Public domain W3C validator