ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0to4untppr Unicode version

Theorem fz0to4untppr 10320
Description: An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
Assertion
Ref Expression
fz0to4untppr  |-  ( 0 ... 4 )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )

Proof of Theorem fz0to4untppr
StepHypRef Expression
1 df-3 9170 . . . . 5  |-  3  =  ( 2  +  1 )
2 2cn 9181 . . . . . . . 8  |-  2  e.  CC
32addlidi 8289 . . . . . . 7  |-  ( 0  +  2 )  =  2
43eqcomi 2233 . . . . . 6  |-  2  =  ( 0  +  2 )
54oveq1i 6011 . . . . 5  |-  ( 2  +  1 )  =  ( ( 0  +  2 )  +  1 )
61, 5eqtri 2250 . . . 4  |-  3  =  ( ( 0  +  2 )  +  1 )
7 3z 9475 . . . . 5  |-  3  e.  ZZ
8 0re 8146 . . . . . 6  |-  0  e.  RR
9 3re 9184 . . . . . 6  |-  3  e.  RR
10 3pos 9204 . . . . . 6  |-  0  <  3
118, 9, 10ltleii 8249 . . . . 5  |-  0  <_  3
12 0z 9457 . . . . . 6  |-  0  e.  ZZ
1312eluz1i 9729 . . . . 5  |-  ( 3  e.  ( ZZ>= `  0
)  <->  ( 3  e.  ZZ  /\  0  <_ 
3 ) )
147, 11, 13mpbir2an 948 . . . 4  |-  3  e.  ( ZZ>= `  0 )
156, 14eqeltrri 2303 . . 3  |-  ( ( 0  +  2 )  +  1 )  e.  ( ZZ>= `  0 )
16 4z 9476 . . . . 5  |-  4  e.  ZZ
17 2re 9180 . . . . . 6  |-  2  e.  RR
18 4re 9187 . . . . . 6  |-  4  e.  RR
19 2lt4 9284 . . . . . 6  |-  2  <  4
2017, 18, 19ltleii 8249 . . . . 5  |-  2  <_  4
21 2z 9474 . . . . . 6  |-  2  e.  ZZ
2221eluz1i 9729 . . . . 5  |-  ( 4  e.  ( ZZ>= `  2
)  <->  ( 4  e.  ZZ  /\  2  <_ 
4 ) )
2316, 20, 22mpbir2an 948 . . . 4  |-  4  e.  ( ZZ>= `  2 )
244fveq2i 5630 . . . 4  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 0  +  2 ) )
2523, 24eleqtri 2304 . . 3  |-  4  e.  ( ZZ>= `  ( 0  +  2 ) )
26 fzsplit2 10246 . . 3  |-  ( ( ( ( 0  +  2 )  +  1 )  e.  ( ZZ>= ` 
0 )  /\  4  e.  ( ZZ>= `  ( 0  +  2 ) ) )  ->  ( 0 ... 4 )  =  ( ( 0 ... ( 0  +  2 ) )  u.  (
( ( 0  +  2 )  +  1 ) ... 4 ) ) )
2715, 25, 26mp2an 426 . 2  |-  ( 0 ... 4 )  =  ( ( 0 ... ( 0  +  2 ) )  u.  (
( ( 0  +  2 )  +  1 ) ... 4 ) )
28 fztp 10274 . . . . 5  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  2 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } )
2912, 28ax-mp 5 . . . 4  |-  ( 0 ... ( 0  +  2 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }
30 ax-1cn 8092 . . . . 5  |-  1  e.  CC
31 eqidd 2230 . . . . . 6  |-  ( 1  e.  CC  ->  0  =  0 )
32 addlid 8285 . . . . . 6  |-  ( 1  e.  CC  ->  (
0  +  1 )  =  1 )
333a1i 9 . . . . . 6  |-  ( 1  e.  CC  ->  (
0  +  2 )  =  2 )
3431, 32, 33tpeq123d 3758 . . . . 5  |-  ( 1  e.  CC  ->  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }  =  { 0 ,  1 ,  2 } )
3530, 34ax-mp 5 . . . 4  |-  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }  =  { 0 ,  1 ,  2 }
3629, 35eqtri 2250 . . 3  |-  ( 0 ... ( 0  +  2 ) )  =  { 0 ,  1 ,  2 }
373a1i 9 . . . . . . . 8  |-  ( 3  e.  ZZ  ->  (
0  +  2 )  =  2 )
3837oveq1d 6016 . . . . . . 7  |-  ( 3  e.  ZZ  ->  (
( 0  +  2 )  +  1 )  =  ( 2  +  1 ) )
3938, 1eqtr4di 2280 . . . . . 6  |-  ( 3  e.  ZZ  ->  (
( 0  +  2 )  +  1 )  =  3 )
4039oveq1d 6016 . . . . 5  |-  ( 3  e.  ZZ  ->  (
( ( 0  +  2 )  +  1 ) ... 4 )  =  ( 3 ... 4 ) )
41 eqid 2229 . . . . . . . . . 10  |-  3  =  3
42 df-4 9171 . . . . . . . . . 10  |-  4  =  ( 3  +  1 )
4341, 42pm3.2i 272 . . . . . . . . 9  |-  ( 3  =  3  /\  4  =  ( 3  +  1 ) )
4443a1i 9 . . . . . . . 8  |-  ( 3  e.  ZZ  ->  (
3  =  3  /\  4  =  ( 3  +  1 ) ) )
45 3lt4 9283 . . . . . . . . . . 11  |-  3  <  4
469, 18, 45ltleii 8249 . . . . . . . . . 10  |-  3  <_  4
477eluz1i 9729 . . . . . . . . . 10  |-  ( 4  e.  ( ZZ>= `  3
)  <->  ( 4  e.  ZZ  /\  3  <_ 
4 ) )
4816, 46, 47mpbir2an 948 . . . . . . . . 9  |-  4  e.  ( ZZ>= `  3 )
49 fzopth 10257 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  3
)  ->  ( (
3 ... 4 )  =  ( 3 ... (
3  +  1 ) )  <->  ( 3  =  3  /\  4  =  ( 3  +  1 ) ) ) )
5048, 49ax-mp 5 . . . . . . . 8  |-  ( ( 3 ... 4 )  =  ( 3 ... ( 3  +  1 ) )  <->  ( 3  =  3  /\  4  =  ( 3  +  1 ) ) )
5144, 50sylibr 134 . . . . . . 7  |-  ( 3  e.  ZZ  ->  (
3 ... 4 )  =  ( 3 ... (
3  +  1 ) ) )
52 fzpr 10273 . . . . . . 7  |-  ( 3  e.  ZZ  ->  (
3 ... ( 3  +  1 ) )  =  { 3 ,  ( 3  +  1 ) } )
5351, 52eqtrd 2262 . . . . . 6  |-  ( 3  e.  ZZ  ->  (
3 ... 4 )  =  { 3 ,  ( 3  +  1 ) } )
5442eqcomi 2233 . . . . . . 7  |-  ( 3  +  1 )  =  4
5554preq2i 3747 . . . . . 6  |-  { 3 ,  ( 3  +  1 ) }  =  { 3 ,  4 }
5653, 55eqtrdi 2278 . . . . 5  |-  ( 3  e.  ZZ  ->  (
3 ... 4 )  =  { 3 ,  4 } )
5740, 56eqtrd 2262 . . . 4  |-  ( 3  e.  ZZ  ->  (
( ( 0  +  2 )  +  1 ) ... 4 )  =  { 3 ,  4 } )
587, 57ax-mp 5 . . 3  |-  ( ( ( 0  +  2 )  +  1 ) ... 4 )  =  { 3 ,  4 }
5936, 58uneq12i 3356 . 2  |-  ( ( 0 ... ( 0  +  2 ) )  u.  ( ( ( 0  +  2 )  +  1 ) ... 4 ) )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )
6027, 59eqtri 2250 1  |-  ( 0 ... 4 )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    u. cun 3195   {cpr 3667   {ctp 3668   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    <_ cle 8182   2c2 9161   3c3 9162   4c4 9163   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  prm23lt5  12786
  Copyright terms: Public domain W3C validator