ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0to4untppr Unicode version

Theorem fz0to4untppr 10033
Description: An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
Assertion
Ref Expression
fz0to4untppr  |-  ( 0 ... 4 )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )

Proof of Theorem fz0to4untppr
StepHypRef Expression
1 df-3 8899 . . . . 5  |-  3  =  ( 2  +  1 )
2 2cn 8910 . . . . . . . 8  |-  2  e.  CC
32addid2i 8023 . . . . . . 7  |-  ( 0  +  2 )  =  2
43eqcomi 2161 . . . . . 6  |-  2  =  ( 0  +  2 )
54oveq1i 5837 . . . . 5  |-  ( 2  +  1 )  =  ( ( 0  +  2 )  +  1 )
61, 5eqtri 2178 . . . 4  |-  3  =  ( ( 0  +  2 )  +  1 )
7 3z 9202 . . . . 5  |-  3  e.  ZZ
8 0re 7881 . . . . . 6  |-  0  e.  RR
9 3re 8913 . . . . . 6  |-  3  e.  RR
10 3pos 8933 . . . . . 6  |-  0  <  3
118, 9, 10ltleii 7983 . . . . 5  |-  0  <_  3
12 0z 9184 . . . . . 6  |-  0  e.  ZZ
1312eluz1i 9452 . . . . 5  |-  ( 3  e.  ( ZZ>= `  0
)  <->  ( 3  e.  ZZ  /\  0  <_ 
3 ) )
147, 11, 13mpbir2an 927 . . . 4  |-  3  e.  ( ZZ>= `  0 )
156, 14eqeltrri 2231 . . 3  |-  ( ( 0  +  2 )  +  1 )  e.  ( ZZ>= `  0 )
16 4z 9203 . . . . 5  |-  4  e.  ZZ
17 2re 8909 . . . . . 6  |-  2  e.  RR
18 4re 8916 . . . . . 6  |-  4  e.  RR
19 2lt4 9012 . . . . . 6  |-  2  <  4
2017, 18, 19ltleii 7983 . . . . 5  |-  2  <_  4
21 2z 9201 . . . . . 6  |-  2  e.  ZZ
2221eluz1i 9452 . . . . 5  |-  ( 4  e.  ( ZZ>= `  2
)  <->  ( 4  e.  ZZ  /\  2  <_ 
4 ) )
2316, 20, 22mpbir2an 927 . . . 4  |-  4  e.  ( ZZ>= `  2 )
244fveq2i 5474 . . . 4  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 0  +  2 ) )
2523, 24eleqtri 2232 . . 3  |-  4  e.  ( ZZ>= `  ( 0  +  2 ) )
26 fzsplit2 9959 . . 3  |-  ( ( ( ( 0  +  2 )  +  1 )  e.  ( ZZ>= ` 
0 )  /\  4  e.  ( ZZ>= `  ( 0  +  2 ) ) )  ->  ( 0 ... 4 )  =  ( ( 0 ... ( 0  +  2 ) )  u.  (
( ( 0  +  2 )  +  1 ) ... 4 ) ) )
2715, 25, 26mp2an 423 . 2  |-  ( 0 ... 4 )  =  ( ( 0 ... ( 0  +  2 ) )  u.  (
( ( 0  +  2 )  +  1 ) ... 4 ) )
28 fztp 9987 . . . . 5  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  2 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } )
2912, 28ax-mp 5 . . . 4  |-  ( 0 ... ( 0  +  2 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }
30 ax-1cn 7828 . . . . 5  |-  1  e.  CC
31 eqidd 2158 . . . . . 6  |-  ( 1  e.  CC  ->  0  =  0 )
32 addid2 8019 . . . . . 6  |-  ( 1  e.  CC  ->  (
0  +  1 )  =  1 )
333a1i 9 . . . . . 6  |-  ( 1  e.  CC  ->  (
0  +  2 )  =  2 )
3431, 32, 33tpeq123d 3653 . . . . 5  |-  ( 1  e.  CC  ->  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }  =  { 0 ,  1 ,  2 } )
3530, 34ax-mp 5 . . . 4  |-  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }  =  { 0 ,  1 ,  2 }
3629, 35eqtri 2178 . . 3  |-  ( 0 ... ( 0  +  2 ) )  =  { 0 ,  1 ,  2 }
373a1i 9 . . . . . . . 8  |-  ( 3  e.  ZZ  ->  (
0  +  2 )  =  2 )
3837oveq1d 5842 . . . . . . 7  |-  ( 3  e.  ZZ  ->  (
( 0  +  2 )  +  1 )  =  ( 2  +  1 ) )
3938, 1eqtr4di 2208 . . . . . 6  |-  ( 3  e.  ZZ  ->  (
( 0  +  2 )  +  1 )  =  3 )
4039oveq1d 5842 . . . . 5  |-  ( 3  e.  ZZ  ->  (
( ( 0  +  2 )  +  1 ) ... 4 )  =  ( 3 ... 4 ) )
41 eqid 2157 . . . . . . . . . 10  |-  3  =  3
42 df-4 8900 . . . . . . . . . 10  |-  4  =  ( 3  +  1 )
4341, 42pm3.2i 270 . . . . . . . . 9  |-  ( 3  =  3  /\  4  =  ( 3  +  1 ) )
4443a1i 9 . . . . . . . 8  |-  ( 3  e.  ZZ  ->  (
3  =  3  /\  4  =  ( 3  +  1 ) ) )
45 3lt4 9011 . . . . . . . . . . 11  |-  3  <  4
469, 18, 45ltleii 7983 . . . . . . . . . 10  |-  3  <_  4
477eluz1i 9452 . . . . . . . . . 10  |-  ( 4  e.  ( ZZ>= `  3
)  <->  ( 4  e.  ZZ  /\  3  <_ 
4 ) )
4816, 46, 47mpbir2an 927 . . . . . . . . 9  |-  4  e.  ( ZZ>= `  3 )
49 fzopth 9970 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  3
)  ->  ( (
3 ... 4 )  =  ( 3 ... (
3  +  1 ) )  <->  ( 3  =  3  /\  4  =  ( 3  +  1 ) ) ) )
5048, 49ax-mp 5 . . . . . . . 8  |-  ( ( 3 ... 4 )  =  ( 3 ... ( 3  +  1 ) )  <->  ( 3  =  3  /\  4  =  ( 3  +  1 ) ) )
5144, 50sylibr 133 . . . . . . 7  |-  ( 3  e.  ZZ  ->  (
3 ... 4 )  =  ( 3 ... (
3  +  1 ) ) )
52 fzpr 9986 . . . . . . 7  |-  ( 3  e.  ZZ  ->  (
3 ... ( 3  +  1 ) )  =  { 3 ,  ( 3  +  1 ) } )
5351, 52eqtrd 2190 . . . . . 6  |-  ( 3  e.  ZZ  ->  (
3 ... 4 )  =  { 3 ,  ( 3  +  1 ) } )
5442eqcomi 2161 . . . . . . 7  |-  ( 3  +  1 )  =  4
5554preq2i 3642 . . . . . 6  |-  { 3 ,  ( 3  +  1 ) }  =  { 3 ,  4 }
5653, 55eqtrdi 2206 . . . . 5  |-  ( 3  e.  ZZ  ->  (
3 ... 4 )  =  { 3 ,  4 } )
5740, 56eqtrd 2190 . . . 4  |-  ( 3  e.  ZZ  ->  (
( ( 0  +  2 )  +  1 ) ... 4 )  =  { 3 ,  4 } )
587, 57ax-mp 5 . . 3  |-  ( ( ( 0  +  2 )  +  1 ) ... 4 )  =  { 3 ,  4 }
5936, 58uneq12i 3260 . 2  |-  ( ( 0 ... ( 0  +  2 ) )  u.  ( ( ( 0  +  2 )  +  1 ) ... 4 ) )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )
6027, 59eqtri 2178 1  |-  ( 0 ... 4 )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128    u. cun 3100   {cpr 3562   {ctp 3563   class class class wbr 3967   ` cfv 5173  (class class class)co 5827   CCcc 7733   0cc0 7735   1c1 7736    + caddc 7738    <_ cle 7916   2c2 8890   3c3 8891   4c4 8892   ZZcz 9173   ZZ>=cuz 9445   ...cfz 9919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4085  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-addcom 7835  ax-addass 7837  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-0id 7843  ax-rnegex 7844  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-tp 3569  df-op 3570  df-uni 3775  df-int 3810  df-br 3968  df-opab 4029  df-mpt 4030  df-id 4256  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-fv 5181  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-fz 9920
This theorem is referenced by:  prm23lt5  12154
  Copyright terms: Public domain W3C validator