| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fz0to4untppr | Unicode version | ||
| Description: An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.) | 
| Ref | Expression | 
|---|---|
| fz0to4untppr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3 9050 | 
. . . . 5
 | |
| 2 | 2cn 9061 | 
. . . . . . . 8
 | |
| 3 | 2 | addlidi 8169 | 
. . . . . . 7
 | 
| 4 | 3 | eqcomi 2200 | 
. . . . . 6
 | 
| 5 | 4 | oveq1i 5932 | 
. . . . 5
 | 
| 6 | 1, 5 | eqtri 2217 | 
. . . 4
 | 
| 7 | 3z 9355 | 
. . . . 5
 | |
| 8 | 0re 8026 | 
. . . . . 6
 | |
| 9 | 3re 9064 | 
. . . . . 6
 | |
| 10 | 3pos 9084 | 
. . . . . 6
 | |
| 11 | 8, 9, 10 | ltleii 8129 | 
. . . . 5
 | 
| 12 | 0z 9337 | 
. . . . . 6
 | |
| 13 | 12 | eluz1i 9608 | 
. . . . 5
 | 
| 14 | 7, 11, 13 | mpbir2an 944 | 
. . . 4
 | 
| 15 | 6, 14 | eqeltrri 2270 | 
. . 3
 | 
| 16 | 4z 9356 | 
. . . . 5
 | |
| 17 | 2re 9060 | 
. . . . . 6
 | |
| 18 | 4re 9067 | 
. . . . . 6
 | |
| 19 | 2lt4 9164 | 
. . . . . 6
 | |
| 20 | 17, 18, 19 | ltleii 8129 | 
. . . . 5
 | 
| 21 | 2z 9354 | 
. . . . . 6
 | |
| 22 | 21 | eluz1i 9608 | 
. . . . 5
 | 
| 23 | 16, 20, 22 | mpbir2an 944 | 
. . . 4
 | 
| 24 | 4 | fveq2i 5561 | 
. . . 4
 | 
| 25 | 23, 24 | eleqtri 2271 | 
. . 3
 | 
| 26 | fzsplit2 10125 | 
. . 3
 | |
| 27 | 15, 25, 26 | mp2an 426 | 
. 2
 | 
| 28 | fztp 10153 | 
. . . . 5
 | |
| 29 | 12, 28 | ax-mp 5 | 
. . . 4
 | 
| 30 | ax-1cn 7972 | 
. . . . 5
 | |
| 31 | eqidd 2197 | 
. . . . . 6
 | |
| 32 | addlid 8165 | 
. . . . . 6
 | |
| 33 | 3 | a1i 9 | 
. . . . . 6
 | 
| 34 | 31, 32, 33 | tpeq123d 3714 | 
. . . . 5
 | 
| 35 | 30, 34 | ax-mp 5 | 
. . . 4
 | 
| 36 | 29, 35 | eqtri 2217 | 
. . 3
 | 
| 37 | 3 | a1i 9 | 
. . . . . . . 8
 | 
| 38 | 37 | oveq1d 5937 | 
. . . . . . 7
 | 
| 39 | 38, 1 | eqtr4di 2247 | 
. . . . . 6
 | 
| 40 | 39 | oveq1d 5937 | 
. . . . 5
 | 
| 41 | eqid 2196 | 
. . . . . . . . . 10
 | |
| 42 | df-4 9051 | 
. . . . . . . . . 10
 | |
| 43 | 41, 42 | pm3.2i 272 | 
. . . . . . . . 9
 | 
| 44 | 43 | a1i 9 | 
. . . . . . . 8
 | 
| 45 | 3lt4 9163 | 
. . . . . . . . . . 11
 | |
| 46 | 9, 18, 45 | ltleii 8129 | 
. . . . . . . . . 10
 | 
| 47 | 7 | eluz1i 9608 | 
. . . . . . . . . 10
 | 
| 48 | 16, 46, 47 | mpbir2an 944 | 
. . . . . . . . 9
 | 
| 49 | fzopth 10136 | 
. . . . . . . . 9
 | |
| 50 | 48, 49 | ax-mp 5 | 
. . . . . . . 8
 | 
| 51 | 44, 50 | sylibr 134 | 
. . . . . . 7
 | 
| 52 | fzpr 10152 | 
. . . . . . 7
 | |
| 53 | 51, 52 | eqtrd 2229 | 
. . . . . 6
 | 
| 54 | 42 | eqcomi 2200 | 
. . . . . . 7
 | 
| 55 | 54 | preq2i 3703 | 
. . . . . 6
 | 
| 56 | 53, 55 | eqtrdi 2245 | 
. . . . 5
 | 
| 57 | 40, 56 | eqtrd 2229 | 
. . . 4
 | 
| 58 | 7, 57 | ax-mp 5 | 
. . 3
 | 
| 59 | 36, 58 | uneq12i 3315 | 
. 2
 | 
| 60 | 27, 59 | eqtri 2217 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 | 
| This theorem is referenced by: prm23lt5 12432 | 
| Copyright terms: Public domain | W3C validator |