ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0to4untppr Unicode version

Theorem fz0to4untppr 10218
Description: An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
Assertion
Ref Expression
fz0to4untppr  |-  ( 0 ... 4 )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )

Proof of Theorem fz0to4untppr
StepHypRef Expression
1 df-3 9069 . . . . 5  |-  3  =  ( 2  +  1 )
2 2cn 9080 . . . . . . . 8  |-  2  e.  CC
32addlidi 8188 . . . . . . 7  |-  ( 0  +  2 )  =  2
43eqcomi 2200 . . . . . 6  |-  2  =  ( 0  +  2 )
54oveq1i 5935 . . . . 5  |-  ( 2  +  1 )  =  ( ( 0  +  2 )  +  1 )
61, 5eqtri 2217 . . . 4  |-  3  =  ( ( 0  +  2 )  +  1 )
7 3z 9374 . . . . 5  |-  3  e.  ZZ
8 0re 8045 . . . . . 6  |-  0  e.  RR
9 3re 9083 . . . . . 6  |-  3  e.  RR
10 3pos 9103 . . . . . 6  |-  0  <  3
118, 9, 10ltleii 8148 . . . . 5  |-  0  <_  3
12 0z 9356 . . . . . 6  |-  0  e.  ZZ
1312eluz1i 9627 . . . . 5  |-  ( 3  e.  ( ZZ>= `  0
)  <->  ( 3  e.  ZZ  /\  0  <_ 
3 ) )
147, 11, 13mpbir2an 944 . . . 4  |-  3  e.  ( ZZ>= `  0 )
156, 14eqeltrri 2270 . . 3  |-  ( ( 0  +  2 )  +  1 )  e.  ( ZZ>= `  0 )
16 4z 9375 . . . . 5  |-  4  e.  ZZ
17 2re 9079 . . . . . 6  |-  2  e.  RR
18 4re 9086 . . . . . 6  |-  4  e.  RR
19 2lt4 9183 . . . . . 6  |-  2  <  4
2017, 18, 19ltleii 8148 . . . . 5  |-  2  <_  4
21 2z 9373 . . . . . 6  |-  2  e.  ZZ
2221eluz1i 9627 . . . . 5  |-  ( 4  e.  ( ZZ>= `  2
)  <->  ( 4  e.  ZZ  /\  2  <_ 
4 ) )
2316, 20, 22mpbir2an 944 . . . 4  |-  4  e.  ( ZZ>= `  2 )
244fveq2i 5564 . . . 4  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 0  +  2 ) )
2523, 24eleqtri 2271 . . 3  |-  4  e.  ( ZZ>= `  ( 0  +  2 ) )
26 fzsplit2 10144 . . 3  |-  ( ( ( ( 0  +  2 )  +  1 )  e.  ( ZZ>= ` 
0 )  /\  4  e.  ( ZZ>= `  ( 0  +  2 ) ) )  ->  ( 0 ... 4 )  =  ( ( 0 ... ( 0  +  2 ) )  u.  (
( ( 0  +  2 )  +  1 ) ... 4 ) ) )
2715, 25, 26mp2an 426 . 2  |-  ( 0 ... 4 )  =  ( ( 0 ... ( 0  +  2 ) )  u.  (
( ( 0  +  2 )  +  1 ) ... 4 ) )
28 fztp 10172 . . . . 5  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  2 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } )
2912, 28ax-mp 5 . . . 4  |-  ( 0 ... ( 0  +  2 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }
30 ax-1cn 7991 . . . . 5  |-  1  e.  CC
31 eqidd 2197 . . . . . 6  |-  ( 1  e.  CC  ->  0  =  0 )
32 addlid 8184 . . . . . 6  |-  ( 1  e.  CC  ->  (
0  +  1 )  =  1 )
333a1i 9 . . . . . 6  |-  ( 1  e.  CC  ->  (
0  +  2 )  =  2 )
3431, 32, 33tpeq123d 3715 . . . . 5  |-  ( 1  e.  CC  ->  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }  =  { 0 ,  1 ,  2 } )
3530, 34ax-mp 5 . . . 4  |-  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }  =  { 0 ,  1 ,  2 }
3629, 35eqtri 2217 . . 3  |-  ( 0 ... ( 0  +  2 ) )  =  { 0 ,  1 ,  2 }
373a1i 9 . . . . . . . 8  |-  ( 3  e.  ZZ  ->  (
0  +  2 )  =  2 )
3837oveq1d 5940 . . . . . . 7  |-  ( 3  e.  ZZ  ->  (
( 0  +  2 )  +  1 )  =  ( 2  +  1 ) )
3938, 1eqtr4di 2247 . . . . . 6  |-  ( 3  e.  ZZ  ->  (
( 0  +  2 )  +  1 )  =  3 )
4039oveq1d 5940 . . . . 5  |-  ( 3  e.  ZZ  ->  (
( ( 0  +  2 )  +  1 ) ... 4 )  =  ( 3 ... 4 ) )
41 eqid 2196 . . . . . . . . . 10  |-  3  =  3
42 df-4 9070 . . . . . . . . . 10  |-  4  =  ( 3  +  1 )
4341, 42pm3.2i 272 . . . . . . . . 9  |-  ( 3  =  3  /\  4  =  ( 3  +  1 ) )
4443a1i 9 . . . . . . . 8  |-  ( 3  e.  ZZ  ->  (
3  =  3  /\  4  =  ( 3  +  1 ) ) )
45 3lt4 9182 . . . . . . . . . . 11  |-  3  <  4
469, 18, 45ltleii 8148 . . . . . . . . . 10  |-  3  <_  4
477eluz1i 9627 . . . . . . . . . 10  |-  ( 4  e.  ( ZZ>= `  3
)  <->  ( 4  e.  ZZ  /\  3  <_ 
4 ) )
4816, 46, 47mpbir2an 944 . . . . . . . . 9  |-  4  e.  ( ZZ>= `  3 )
49 fzopth 10155 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  3
)  ->  ( (
3 ... 4 )  =  ( 3 ... (
3  +  1 ) )  <->  ( 3  =  3  /\  4  =  ( 3  +  1 ) ) ) )
5048, 49ax-mp 5 . . . . . . . 8  |-  ( ( 3 ... 4 )  =  ( 3 ... ( 3  +  1 ) )  <->  ( 3  =  3  /\  4  =  ( 3  +  1 ) ) )
5144, 50sylibr 134 . . . . . . 7  |-  ( 3  e.  ZZ  ->  (
3 ... 4 )  =  ( 3 ... (
3  +  1 ) ) )
52 fzpr 10171 . . . . . . 7  |-  ( 3  e.  ZZ  ->  (
3 ... ( 3  +  1 ) )  =  { 3 ,  ( 3  +  1 ) } )
5351, 52eqtrd 2229 . . . . . 6  |-  ( 3  e.  ZZ  ->  (
3 ... 4 )  =  { 3 ,  ( 3  +  1 ) } )
5442eqcomi 2200 . . . . . . 7  |-  ( 3  +  1 )  =  4
5554preq2i 3704 . . . . . 6  |-  { 3 ,  ( 3  +  1 ) }  =  { 3 ,  4 }
5653, 55eqtrdi 2245 . . . . 5  |-  ( 3  e.  ZZ  ->  (
3 ... 4 )  =  { 3 ,  4 } )
5740, 56eqtrd 2229 . . . 4  |-  ( 3  e.  ZZ  ->  (
( ( 0  +  2 )  +  1 ) ... 4 )  =  { 3 ,  4 } )
587, 57ax-mp 5 . . 3  |-  ( ( ( 0  +  2 )  +  1 ) ... 4 )  =  { 3 ,  4 }
5936, 58uneq12i 3316 . 2  |-  ( ( 0 ... ( 0  +  2 ) )  u.  ( ( ( 0  +  2 )  +  1 ) ... 4 ) )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )
6027, 59eqtri 2217 1  |-  ( 0 ... 4 )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    u. cun 3155   {cpr 3624   {ctp 3625   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7896   0cc0 7898   1c1 7899    + caddc 7901    <_ cle 8081   2c2 9060   3c3 9061   4c4 9062   ZZcz 9345   ZZ>=cuz 9620   ...cfz 10102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-fz 10103
This theorem is referenced by:  prm23lt5  12459
  Copyright terms: Public domain W3C validator