ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efgt1p Unicode version

Theorem efgt1p 11637
Description: The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
efgt1p  |-  ( A  e.  RR+  ->  ( 1  +  A )  < 
( exp `  A
) )

Proof of Theorem efgt1p
Dummy variables  k  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpcn 9598 . . 3  |-  ( A  e.  RR+  ->  A  e.  CC )
2 1e0p1 9363 . . . . 5  |-  1  =  ( 0  +  1 )
32fveq2i 5489 . . . 4  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
1 )  =  (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 ( 0  +  1 ) )
4 0nn0 9129 . . . . . . . 8  |-  0  e.  NN0
5 nn0uz 9500 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
64, 5eleqtri 2241 . . . . . . 7  |-  0  e.  ( ZZ>= `  0 )
76a1i 9 . . . . . 6  |-  ( A  e.  CC  ->  0  e.  ( ZZ>= `  0 )
)
8 elnn0uz 9503 . . . . . . 7  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
9 eqid 2165 . . . . . . . . 9  |-  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) )
109eftvalcn 11598 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
11 eftcl 11595 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
1210, 11eqeltrd 2243 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
138, 12sylan2br 286 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
14 addcl 7878 . . . . . . 7  |-  ( ( k  e.  CC  /\  y  e.  CC )  ->  ( k  +  y )  e.  CC )
1514adantl 275 . . . . . 6  |-  ( ( A  e.  CC  /\  ( k  e.  CC  /\  y  e.  CC ) )  ->  ( k  +  y )  e.  CC )
167, 13, 15seq3p1 10397 . . . . 5  |-  ( A  e.  CC  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  ( 0  +  1 ) )  =  ( (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  0 )  +  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 ( 0  +  1 ) ) ) )
17 0zd 9203 . . . . . . . 8  |-  ( A  e.  CC  ->  0  e.  ZZ )
1817, 13, 15seq3-1 10395 . . . . . . 7  |-  ( A  e.  CC  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
0 )  =  ( ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  0
) )
199eftvalcn 11598 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
0 )  =  ( ( A ^ 0 )  /  ( ! `
 0 ) ) )
204, 19mpan2 422 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  0
)  =  ( ( A ^ 0 )  /  ( ! ` 
0 ) ) )
21 eft0val 11634 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( A ^ 0 )  /  ( ! `
 0 ) )  =  1 )
2220, 21eqtrd 2198 . . . . . . 7  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  0
)  =  1 )
2318, 22eqtrd 2198 . . . . . 6  |-  ( A  e.  CC  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
0 )  =  1 )
242fveq2i 5489 . . . . . . 7  |-  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 1 )  =  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  ( 0  +  1 ) )
25 1nn0 9130 . . . . . . . . 9  |-  1  e.  NN0
269eftvalcn 11598 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  1  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ` 
1 )  =  ( ( A ^ 1 )  /  ( ! `
 1 ) ) )
2725, 26mpan2 422 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  1
)  =  ( ( A ^ 1 )  /  ( ! ` 
1 ) ) )
28 fac1 10642 . . . . . . . . . 10  |-  ( ! `
 1 )  =  1
2928oveq2i 5853 . . . . . . . . 9  |-  ( ( A ^ 1 )  /  ( ! ` 
1 ) )  =  ( ( A ^
1 )  /  1
)
30 exp1 10461 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
3130oveq1d 5857 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  1 )  =  ( A  / 
1 ) )
32 div1 8599 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A  /  1 )  =  A )
3331, 32eqtrd 2198 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  1 )  =  A )
3429, 33syl5eq 2211 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( A ^ 1 )  /  ( ! `
 1 ) )  =  A )
3527, 34eqtrd 2198 . . . . . . 7  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  1
)  =  A )
3624, 35eqtr3id 2213 . . . . . 6  |-  ( A  e.  CC  ->  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  (
0  +  1 ) )  =  A )
3723, 36oveq12d 5860 . . . . 5  |-  ( A  e.  CC  ->  (
(  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 0 )  +  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  ( 0  +  1 ) ) )  =  ( 1  +  A
) )
3816, 37eqtrd 2198 . . . 4  |-  ( A  e.  CC  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  ( 0  +  1 ) )  =  ( 1  +  A ) )
393, 38syl5eq 2211 . . 3  |-  ( A  e.  CC  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
1 )  =  ( 1  +  A ) )
401, 39syl 14 . 2  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
1 )  =  ( 1  +  A ) )
41 id 19 . . 3  |-  ( A  e.  RR+  ->  A  e.  RR+ )
4225a1i 9 . . 3  |-  ( A  e.  RR+  ->  1  e. 
NN0 )
439, 41, 42effsumlt 11633 . 2  |-  ( A  e.  RR+  ->  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) ` 
1 )  <  ( exp `  A ) )
4440, 43eqbrtrrd 4006 1  |-  ( A  e.  RR+  ->  ( 1  +  A )  < 
( exp `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   class class class wbr 3982    |-> cmpt 4043   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    < clt 7933    / cdiv 8568   NN0cn0 9114   ZZ>=cuz 9466   RR+crp 9589    seqcseq 10380   ^cexp 10454   !cfa 10638   expce 11583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589
This theorem is referenced by:  efgt1  11638  reeff1olem  13332  logdivlti  13442
  Copyright terms: Public domain W3C validator