ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz01or Unicode version

Theorem fz01or 10307
Description: An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.)
Assertion
Ref Expression
fz01or  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  =  0  \/  A  =  1 ) )

Proof of Theorem fz01or
StepHypRef Expression
1 1eluzge0 9769 . . . . . 6  |-  1  e.  ( ZZ>= `  0 )
2 eluzfz1 10227 . . . . . 6  |-  ( 1  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... 1
) )
31, 2ax-mp 5 . . . . 5  |-  0  e.  ( 0 ... 1
)
4 fzsplit 10247 . . . . 5  |-  ( 0  e.  ( 0 ... 1 )  ->  (
0 ... 1 )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) ) )
53, 4ax-mp 5 . . . 4  |-  ( 0 ... 1 )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) )
65eleq2i 2296 . . 3  |-  ( A  e.  ( 0 ... 1 )  <->  A  e.  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) ) )
7 elun 3345 . . 3  |-  ( A  e.  ( ( 0 ... 0 )  u.  ( ( 0  +  1 ) ... 1
) )  <->  ( A  e.  ( 0 ... 0
)  \/  A  e.  ( ( 0  +  1 ) ... 1
) ) )
86, 7bitri 184 . 2  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  e.  ( 0 ... 0
)  \/  A  e.  ( ( 0  +  1 ) ... 1
) ) )
9 elfz1eq 10231 . . . 4  |-  ( A  e.  ( 0 ... 0 )  ->  A  =  0 )
10 0nn0 9384 . . . . . . 7  |-  0  e.  NN0
11 nn0uz 9757 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
1210, 11eleqtri 2304 . . . . . 6  |-  0  e.  ( ZZ>= `  0 )
13 eluzfz1 10227 . . . . . 6  |-  ( 0  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... 0
) )
1412, 13ax-mp 5 . . . . 5  |-  0  e.  ( 0 ... 0
)
15 eleq1 2292 . . . . 5  |-  ( A  =  0  ->  ( A  e.  ( 0 ... 0 )  <->  0  e.  ( 0 ... 0
) ) )
1614, 15mpbiri 168 . . . 4  |-  ( A  =  0  ->  A  e.  ( 0 ... 0
) )
179, 16impbii 126 . . 3  |-  ( A  e.  ( 0 ... 0 )  <->  A  = 
0 )
18 0p1e1 9224 . . . . . 6  |-  ( 0  +  1 )  =  1
1918oveq1i 6011 . . . . 5  |-  ( ( 0  +  1 ) ... 1 )  =  ( 1 ... 1
)
2019eleq2i 2296 . . . 4  |-  ( A  e.  ( ( 0  +  1 ) ... 1 )  <->  A  e.  ( 1 ... 1
) )
21 elfz1eq 10231 . . . . 5  |-  ( A  e.  ( 1 ... 1 )  ->  A  =  1 )
22 1nn 9121 . . . . . . . 8  |-  1  e.  NN
23 nnuz 9758 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2422, 23eleqtri 2304 . . . . . . 7  |-  1  e.  ( ZZ>= `  1 )
25 eluzfz1 10227 . . . . . . 7  |-  ( 1  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... 1
) )
2624, 25ax-mp 5 . . . . . 6  |-  1  e.  ( 1 ... 1
)
27 eleq1 2292 . . . . . 6  |-  ( A  =  1  ->  ( A  e.  ( 1 ... 1 )  <->  1  e.  ( 1 ... 1
) ) )
2826, 27mpbiri 168 . . . . 5  |-  ( A  =  1  ->  A  e.  ( 1 ... 1
) )
2921, 28impbii 126 . . . 4  |-  ( A  e.  ( 1 ... 1 )  <->  A  = 
1 )
3020, 29bitri 184 . . 3  |-  ( A  e.  ( ( 0  +  1 ) ... 1 )  <->  A  = 
1 )
3117, 30orbi12i 769 . 2  |-  ( ( A  e.  ( 0 ... 0 )  \/  A  e.  ( ( 0  +  1 ) ... 1 ) )  <-> 
( A  =  0  \/  A  =  1 ) )
328, 31bitri 184 1  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  =  0  \/  A  =  1 ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200    u. cun 3195   ` cfv 5318  (class class class)co 6001   0cc0 7999   1c1 8000    + caddc 8002   NNcn 9110   NN0cn0 9369   ZZ>=cuz 9722   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  hashfiv01gt1  11004  mod2eq1n2dvds  12390
  Copyright terms: Public domain W3C validator