ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz01or Unicode version

Theorem fz01or 10143
Description: An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.)
Assertion
Ref Expression
fz01or  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  =  0  \/  A  =  1 ) )

Proof of Theorem fz01or
StepHypRef Expression
1 1eluzge0 9606 . . . . . 6  |-  1  e.  ( ZZ>= `  0 )
2 eluzfz1 10063 . . . . . 6  |-  ( 1  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... 1
) )
31, 2ax-mp 5 . . . . 5  |-  0  e.  ( 0 ... 1
)
4 fzsplit 10083 . . . . 5  |-  ( 0  e.  ( 0 ... 1 )  ->  (
0 ... 1 )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) ) )
53, 4ax-mp 5 . . . 4  |-  ( 0 ... 1 )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) )
65eleq2i 2256 . . 3  |-  ( A  e.  ( 0 ... 1 )  <->  A  e.  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) ) )
7 elun 3291 . . 3  |-  ( A  e.  ( ( 0 ... 0 )  u.  ( ( 0  +  1 ) ... 1
) )  <->  ( A  e.  ( 0 ... 0
)  \/  A  e.  ( ( 0  +  1 ) ... 1
) ) )
86, 7bitri 184 . 2  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  e.  ( 0 ... 0
)  \/  A  e.  ( ( 0  +  1 ) ... 1
) ) )
9 elfz1eq 10067 . . . 4  |-  ( A  e.  ( 0 ... 0 )  ->  A  =  0 )
10 0nn0 9222 . . . . . . 7  |-  0  e.  NN0
11 nn0uz 9594 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
1210, 11eleqtri 2264 . . . . . 6  |-  0  e.  ( ZZ>= `  0 )
13 eluzfz1 10063 . . . . . 6  |-  ( 0  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... 0
) )
1412, 13ax-mp 5 . . . . 5  |-  0  e.  ( 0 ... 0
)
15 eleq1 2252 . . . . 5  |-  ( A  =  0  ->  ( A  e.  ( 0 ... 0 )  <->  0  e.  ( 0 ... 0
) ) )
1614, 15mpbiri 168 . . . 4  |-  ( A  =  0  ->  A  e.  ( 0 ... 0
) )
179, 16impbii 126 . . 3  |-  ( A  e.  ( 0 ... 0 )  <->  A  = 
0 )
18 0p1e1 9064 . . . . . 6  |-  ( 0  +  1 )  =  1
1918oveq1i 5907 . . . . 5  |-  ( ( 0  +  1 ) ... 1 )  =  ( 1 ... 1
)
2019eleq2i 2256 . . . 4  |-  ( A  e.  ( ( 0  +  1 ) ... 1 )  <->  A  e.  ( 1 ... 1
) )
21 elfz1eq 10067 . . . . 5  |-  ( A  e.  ( 1 ... 1 )  ->  A  =  1 )
22 1nn 8961 . . . . . . . 8  |-  1  e.  NN
23 nnuz 9595 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2422, 23eleqtri 2264 . . . . . . 7  |-  1  e.  ( ZZ>= `  1 )
25 eluzfz1 10063 . . . . . . 7  |-  ( 1  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... 1
) )
2624, 25ax-mp 5 . . . . . 6  |-  1  e.  ( 1 ... 1
)
27 eleq1 2252 . . . . . 6  |-  ( A  =  1  ->  ( A  e.  ( 1 ... 1 )  <->  1  e.  ( 1 ... 1
) ) )
2826, 27mpbiri 168 . . . . 5  |-  ( A  =  1  ->  A  e.  ( 1 ... 1
) )
2921, 28impbii 126 . . . 4  |-  ( A  e.  ( 1 ... 1 )  <->  A  = 
1 )
3020, 29bitri 184 . . 3  |-  ( A  e.  ( ( 0  +  1 ) ... 1 )  <->  A  = 
1 )
3117, 30orbi12i 765 . 2  |-  ( ( A  e.  ( 0 ... 0 )  \/  A  e.  ( ( 0  +  1 ) ... 1 ) )  <-> 
( A  =  0  \/  A  =  1 ) )
328, 31bitri 184 1  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  =  0  \/  A  =  1 ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2160    u. cun 3142   ` cfv 5235  (class class class)co 5897   0cc0 7842   1c1 7843    + caddc 7845   NNcn 8950   NN0cn0 9207   ZZ>=cuz 9559   ...cfz 10040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-n0 9208  df-z 9285  df-uz 9560  df-fz 10041
This theorem is referenced by:  hashfiv01gt1  10797  mod2eq1n2dvds  11919
  Copyright terms: Public domain W3C validator