ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz01or Unicode version

Theorem fz01or 10046
Description: An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.)
Assertion
Ref Expression
fz01or  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  =  0  \/  A  =  1 ) )

Proof of Theorem fz01or
StepHypRef Expression
1 1eluzge0 9512 . . . . . 6  |-  1  e.  ( ZZ>= `  0 )
2 eluzfz1 9966 . . . . . 6  |-  ( 1  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... 1
) )
31, 2ax-mp 5 . . . . 5  |-  0  e.  ( 0 ... 1
)
4 fzsplit 9986 . . . . 5  |-  ( 0  e.  ( 0 ... 1 )  ->  (
0 ... 1 )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) ) )
53, 4ax-mp 5 . . . 4  |-  ( 0 ... 1 )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) )
65eleq2i 2233 . . 3  |-  ( A  e.  ( 0 ... 1 )  <->  A  e.  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) ) )
7 elun 3263 . . 3  |-  ( A  e.  ( ( 0 ... 0 )  u.  ( ( 0  +  1 ) ... 1
) )  <->  ( A  e.  ( 0 ... 0
)  \/  A  e.  ( ( 0  +  1 ) ... 1
) ) )
86, 7bitri 183 . 2  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  e.  ( 0 ... 0
)  \/  A  e.  ( ( 0  +  1 ) ... 1
) ) )
9 elfz1eq 9970 . . . 4  |-  ( A  e.  ( 0 ... 0 )  ->  A  =  0 )
10 0nn0 9129 . . . . . . 7  |-  0  e.  NN0
11 nn0uz 9500 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
1210, 11eleqtri 2241 . . . . . 6  |-  0  e.  ( ZZ>= `  0 )
13 eluzfz1 9966 . . . . . 6  |-  ( 0  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... 0
) )
1412, 13ax-mp 5 . . . . 5  |-  0  e.  ( 0 ... 0
)
15 eleq1 2229 . . . . 5  |-  ( A  =  0  ->  ( A  e.  ( 0 ... 0 )  <->  0  e.  ( 0 ... 0
) ) )
1614, 15mpbiri 167 . . . 4  |-  ( A  =  0  ->  A  e.  ( 0 ... 0
) )
179, 16impbii 125 . . 3  |-  ( A  e.  ( 0 ... 0 )  <->  A  = 
0 )
18 0p1e1 8971 . . . . . 6  |-  ( 0  +  1 )  =  1
1918oveq1i 5852 . . . . 5  |-  ( ( 0  +  1 ) ... 1 )  =  ( 1 ... 1
)
2019eleq2i 2233 . . . 4  |-  ( A  e.  ( ( 0  +  1 ) ... 1 )  <->  A  e.  ( 1 ... 1
) )
21 elfz1eq 9970 . . . . 5  |-  ( A  e.  ( 1 ... 1 )  ->  A  =  1 )
22 1nn 8868 . . . . . . . 8  |-  1  e.  NN
23 nnuz 9501 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2422, 23eleqtri 2241 . . . . . . 7  |-  1  e.  ( ZZ>= `  1 )
25 eluzfz1 9966 . . . . . . 7  |-  ( 1  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... 1
) )
2624, 25ax-mp 5 . . . . . 6  |-  1  e.  ( 1 ... 1
)
27 eleq1 2229 . . . . . 6  |-  ( A  =  1  ->  ( A  e.  ( 1 ... 1 )  <->  1  e.  ( 1 ... 1
) ) )
2826, 27mpbiri 167 . . . . 5  |-  ( A  =  1  ->  A  e.  ( 1 ... 1
) )
2921, 28impbii 125 . . . 4  |-  ( A  e.  ( 1 ... 1 )  <->  A  = 
1 )
3020, 29bitri 183 . . 3  |-  ( A  e.  ( ( 0  +  1 ) ... 1 )  <->  A  = 
1 )
3117, 30orbi12i 754 . 2  |-  ( ( A  e.  ( 0 ... 0 )  \/  A  e.  ( ( 0  +  1 ) ... 1 ) )  <-> 
( A  =  0  \/  A  =  1 ) )
328, 31bitri 183 1  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  =  0  \/  A  =  1 ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136    u. cun 3114   ` cfv 5188  (class class class)co 5842   0cc0 7753   1c1 7754    + caddc 7756   NNcn 8857   NN0cn0 9114   ZZ>=cuz 9466   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by:  hashfiv01gt1  10695  mod2eq1n2dvds  11816
  Copyright terms: Public domain W3C validator