| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrri | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleqtrr.1 |
|
| eleqtrr.2 |
|
| Ref | Expression |
|---|---|
| eleqtrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrr.1 |
. 2
| |
| 2 | eleqtrr.2 |
. . 3
| |
| 3 | 2 | eqcomi 2233 |
. 2
|
| 4 | 1, 3 | eleqtri 2304 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: 3eltr4i 2311 undifexmid 4277 opi1 4318 opi2 4319 ordpwsucexmid 4662 peano1 4686 acexmidlemcase 5996 acexmidlem2 5998 0lt2o 6587 1lt2o 6588 0elixp 6876 ac6sfi 7060 ctssdccl 7278 exmidomni 7309 exmidonfinlem 7371 exmidfodomrlemr 7380 exmidfodomrlemrALT 7381 exmidaclem 7390 pw1ne3 7415 3nelsucpw1 7419 1lt2pi 7527 prarloclemarch2 7606 prarloclemlt 7680 prarloclemcalc 7689 suplocexprlemdisj 7907 suplocexprlemub 7910 pnfxr 8199 mnfxr 8203 0bits 12470 fnpr2ob 13373 dveflem 15400 |
| Copyright terms: Public domain | W3C validator |