| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrri | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleqtrr.1 |
|
| eleqtrr.2 |
|
| Ref | Expression |
|---|---|
| eleqtrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrr.1 |
. 2
| |
| 2 | eleqtrr.2 |
. . 3
| |
| 3 | 2 | eqcomi 2209 |
. 2
|
| 4 | 1, 3 | eleqtri 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: 3eltr4i 2287 undifexmid 4238 opi1 4277 opi2 4278 ordpwsucexmid 4619 peano1 4643 acexmidlemcase 5941 acexmidlem2 5943 0lt2o 6529 1lt2o 6530 0elixp 6818 ac6sfi 6997 ctssdccl 7215 exmidomni 7246 exmidonfinlem 7303 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 exmidaclem 7322 pw1ne3 7344 3nelsucpw1 7348 1lt2pi 7455 prarloclemarch2 7534 prarloclemlt 7608 prarloclemcalc 7617 suplocexprlemdisj 7835 suplocexprlemub 7838 pnfxr 8127 mnfxr 8131 0bits 12303 fnpr2ob 13205 dveflem 15231 |
| Copyright terms: Public domain | W3C validator |