![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleqtrri | Unicode version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleqtrr.1 |
![]() ![]() ![]() ![]() |
eleqtrr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eleqtrri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrr.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eleqtrr.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2197 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | eleqtri 2268 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: 3eltr4i 2275 undifexmid 4222 opi1 4261 opi2 4262 ordpwsucexmid 4602 peano1 4626 acexmidlemcase 5913 acexmidlem2 5915 0lt2o 6494 1lt2o 6495 0elixp 6783 ac6sfi 6954 ctssdccl 7170 exmidomni 7201 exmidonfinlem 7253 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 exmidaclem 7268 pw1ne3 7290 3nelsucpw1 7294 1lt2pi 7400 prarloclemarch2 7479 prarloclemlt 7553 prarloclemcalc 7562 suplocexprlemdisj 7780 suplocexprlemub 7783 pnfxr 8072 mnfxr 8076 fnpr2ob 12923 dveflem 14872 |
Copyright terms: Public domain | W3C validator |