| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eleqtrri | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| eleqtrr.1 | 
 | 
| eleqtrr.2 | 
 | 
| Ref | Expression | 
|---|---|
| eleqtrri | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleqtrr.1 | 
. 2
 | |
| 2 | eleqtrr.2 | 
. . 3
 | |
| 3 | 2 | eqcomi 2200 | 
. 2
 | 
| 4 | 1, 3 | eleqtri 2271 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: 3eltr4i 2278 undifexmid 4226 opi1 4265 opi2 4266 ordpwsucexmid 4606 peano1 4630 acexmidlemcase 5917 acexmidlem2 5919 0lt2o 6499 1lt2o 6500 0elixp 6788 ac6sfi 6959 ctssdccl 7177 exmidomni 7208 exmidonfinlem 7260 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 exmidaclem 7275 pw1ne3 7297 3nelsucpw1 7301 1lt2pi 7407 prarloclemarch2 7486 prarloclemlt 7560 prarloclemcalc 7569 suplocexprlemdisj 7787 suplocexprlemub 7790 pnfxr 8079 mnfxr 8083 fnpr2ob 12983 dveflem 14962 | 
| Copyright terms: Public domain | W3C validator |