ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtrri Unicode version

Theorem eleqtrri 2242
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eleqtrr.1  |-  A  e.  B
eleqtrr.2  |-  C  =  B
Assertion
Ref Expression
eleqtrri  |-  A  e.  C

Proof of Theorem eleqtrri
StepHypRef Expression
1 eleqtrr.1 . 2  |-  A  e.  B
2 eleqtrr.2 . . 3  |-  C  =  B
32eqcomi 2169 . 2  |-  B  =  C
41, 3eleqtri 2241 1  |-  A  e.  C
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161
This theorem is referenced by:  3eltr4i  2248  undifexmid  4172  opi1  4210  opi2  4211  ordpwsucexmid  4547  peano1  4571  acexmidlemcase  5837  acexmidlem2  5839  0lt2o  6409  1lt2o  6410  0elixp  6695  ac6sfi  6864  ctssdccl  7076  exmidomni  7106  exmidonfinlem  7149  exmidfodomrlemr  7158  exmidfodomrlemrALT  7159  exmidaclem  7164  pw1ne3  7186  3nelsucpw1  7190  1lt2pi  7281  prarloclemarch2  7360  prarloclemlt  7434  prarloclemcalc  7443  suplocexprlemdisj  7661  suplocexprlemub  7664  pnfxr  7951  mnfxr  7955  dveflem  13327
  Copyright terms: Public domain W3C validator