| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrri | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleqtrr.1 |
|
| eleqtrr.2 |
|
| Ref | Expression |
|---|---|
| eleqtrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrr.1 |
. 2
| |
| 2 | eleqtrr.2 |
. . 3
| |
| 3 | 2 | eqcomi 2200 |
. 2
|
| 4 | 1, 3 | eleqtri 2271 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: 3eltr4i 2278 undifexmid 4227 opi1 4266 opi2 4267 ordpwsucexmid 4607 peano1 4631 acexmidlemcase 5920 acexmidlem2 5922 0lt2o 6508 1lt2o 6509 0elixp 6797 ac6sfi 6968 ctssdccl 7186 exmidomni 7217 exmidonfinlem 7272 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 exmidaclem 7291 pw1ne3 7313 3nelsucpw1 7317 1lt2pi 7424 prarloclemarch2 7503 prarloclemlt 7577 prarloclemcalc 7586 suplocexprlemdisj 7804 suplocexprlemub 7807 pnfxr 8096 mnfxr 8100 0bits 12141 fnpr2ob 13042 dveflem 15046 |
| Copyright terms: Public domain | W3C validator |