ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ege2le3 Unicode version

Theorem ege2le3 11579
Description: Euler's constant  _e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
erelem1.1  |-  F  =  ( n  e.  NN  |->  ( 2  x.  (
( 1  /  2
) ^ n ) ) )
erelem1.2  |-  G  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
Assertion
Ref Expression
ege2le3  |-  ( 2  <_  _e  /\  _e  <_  3 )

Proof of Theorem ege2le3
Dummy variables  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 9110 . . . . . . . . 9  |-  0  e.  NN0
2 nn0uz 9478 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
31, 2eleqtri 2232 . . . . . . . 8  |-  0  e.  ( ZZ>= `  0 )
43a1i 9 . . . . . . 7  |-  ( T. 
->  0  e.  ( ZZ>=
`  0 ) )
5 elnn0uz 9481 . . . . . . . . . 10  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
65biimpri 132 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
7 faccl 10620 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
87nnrecred 8885 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 1  /  ( ! `  k ) )  e.  RR )
9 fveq2 5470 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
109oveq2d 5842 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
( ! `  k
) ) )
11 erelem1.2 . . . . . . . . . . . 12  |-  G  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
1210, 11fvmptg 5546 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  ( 1  /  ( ! `  k )
)  e.  RR )  ->  ( G `  k )  =  ( 1  /  ( ! `
 k ) ) )
138, 12mpdan 418 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( G `
 k )  =  ( 1  /  ( ! `  k )
) )
1413, 8eqeltrd 2234 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( G `
 k )  e.  RR )
156, 14syl 14 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  0
)  ->  ( G `  k )  e.  RR )
1615adantl 275 . . . . . . 7  |-  ( ( T.  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( G `  k )  e.  RR )
17 readdcl 7860 . . . . . . . 8  |-  ( ( k  e.  RR  /\  y  e.  RR )  ->  ( k  +  y )  e.  RR )
1817adantl 275 . . . . . . 7  |-  ( ( T.  /\  ( k  e.  RR  /\  y  e.  RR ) )  -> 
( k  +  y )  e.  RR )
194, 16, 18seq3p1 10370 . . . . . 6  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  ( 0  +  1 ) )  =  ( (  seq 0 (  +  ,  G ) `  0
)  +  ( G `
 ( 0  +  1 ) ) ) )
20 0zd 9184 . . . . . . . . 9  |-  ( T. 
->  0  e.  ZZ )
2120, 16, 18seq3-1 10368 . . . . . . . 8  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  0 )  =  ( G ` 
0 ) )
22 fveq2 5470 . . . . . . . . . . . . 13  |-  ( n  =  0  ->  ( ! `  n )  =  ( ! ` 
0 ) )
23 fac0 10613 . . . . . . . . . . . . 13  |-  ( ! `
 0 )  =  1
2422, 23eqtrdi 2206 . . . . . . . . . . . 12  |-  ( n  =  0  ->  ( ! `  n )  =  1 )
2524oveq2d 5842 . . . . . . . . . . 11  |-  ( n  =  0  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
1 ) )
26 ax-1cn 7827 . . . . . . . . . . . 12  |-  1  e.  CC
2726div1i 8617 . . . . . . . . . . 11  |-  ( 1  /  1 )  =  1
2825, 27eqtrdi 2206 . . . . . . . . . 10  |-  ( n  =  0  ->  (
1  /  ( ! `
 n ) )  =  1 )
29 1ex 7875 . . . . . . . . . 10  |-  1  e.  _V
3028, 11, 29fvmpt 5547 . . . . . . . . 9  |-  ( 0  e.  NN0  ->  ( G `
 0 )  =  1 )
311, 30mp1i 10 . . . . . . . 8  |-  ( T. 
->  ( G `  0
)  =  1 )
3221, 31eqtrd 2190 . . . . . . 7  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  0 )  =  1 )
33 1e0p1 9341 . . . . . . . . 9  |-  1  =  ( 0  +  1 )
3433fveq2i 5473 . . . . . . . 8  |-  ( G `
 1 )  =  ( G `  (
0  +  1 ) )
35 1nn0 9111 . . . . . . . . 9  |-  1  e.  NN0
36 fveq2 5470 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  ( ! `  n )  =  ( ! ` 
1 ) )
37 fac1 10614 . . . . . . . . . . . . 13  |-  ( ! `
 1 )  =  1
3836, 37eqtrdi 2206 . . . . . . . . . . . 12  |-  ( n  =  1  ->  ( ! `  n )  =  1 )
3938oveq2d 5842 . . . . . . . . . . 11  |-  ( n  =  1  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
1 ) )
4039, 27eqtrdi 2206 . . . . . . . . . 10  |-  ( n  =  1  ->  (
1  /  ( ! `
 n ) )  =  1 )
4140, 11, 29fvmpt 5547 . . . . . . . . 9  |-  ( 1  e.  NN0  ->  ( G `
 1 )  =  1 )
4235, 41mp1i 10 . . . . . . . 8  |-  ( T. 
->  ( G `  1
)  =  1 )
4334, 42eqtr3id 2204 . . . . . . 7  |-  ( T. 
->  ( G `  (
0  +  1 ) )  =  1 )
4432, 43oveq12d 5844 . . . . . 6  |-  ( T. 
->  ( (  seq 0
(  +  ,  G
) `  0 )  +  ( G `  ( 0  +  1 ) ) )  =  ( 1  +  1 ) )
4519, 44eqtrd 2190 . . . . 5  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  ( 0  +  1 ) )  =  ( 1  +  1 ) )
4633fveq2i 5473 . . . . 5  |-  (  seq 0 (  +  ,  G ) `  1
)  =  (  seq 0 (  +  ,  G ) `  (
0  +  1 ) )
47 df-2 8897 . . . . 5  |-  2  =  ( 1  +  1 )
4845, 46, 473eqtr4g 2215 . . . 4  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  1 )  =  2 )
4935a1i 9 . . . . 5  |-  ( T. 
->  1  e.  NN0 )
50 nn0z 9192 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e.  ZZ )
51 1exp 10457 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
5250, 51syl 14 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( 1 ^ n )  =  1 )
5352oveq1d 5841 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( ( 1 ^ n )  /  ( ! `  n ) )  =  ( 1  /  ( ! `  n )
) )
5453mpteq2ia 4052 . . . . . . . . 9  |-  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( 1  / 
( ! `  n
) ) )
5511, 54eqtr4i 2181 . . . . . . . 8  |-  G  =  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n )
) )
5655efcvg 11574 . . . . . . 7  |-  ( 1  e.  CC  ->  seq 0 (  +  ,  G )  ~~>  ( exp `  1 ) )
5726, 56mp1i 10 . . . . . 6  |-  ( T. 
->  seq 0 (  +  ,  G )  ~~>  ( exp `  1 ) )
58 df-e 11557 . . . . . 6  |-  _e  =  ( exp `  1 )
5957, 58breqtrrdi 4008 . . . . 5  |-  ( T. 
->  seq 0 (  +  ,  G )  ~~>  _e )
6013adantl 275 . . . . . 6  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( G `  k )  =  ( 1  / 
( ! `  k
) ) )
617adantl 275 . . . . . . 7  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( ! `  k )  e.  NN )
6261nnrecred 8885 . . . . . 6  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ! `
 k ) )  e.  RR )
6360, 62eqeltrd 2234 . . . . 5  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( G `  k )  e.  RR )
6461nnred 8851 . . . . . . 7  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( ! `  k )  e.  RR )
6561nngt0d 8882 . . . . . . 7  |-  ( ( T.  /\  k  e. 
NN0 )  ->  0  <  ( ! `  k
) )
66 1re 7879 . . . . . . . 8  |-  1  e.  RR
67 0le1 8360 . . . . . . . 8  |-  0  <_  1
68 divge0 8749 . . . . . . . 8  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( ( ! `
 k )  e.  RR  /\  0  < 
( ! `  k
) ) )  -> 
0  <_  ( 1  /  ( ! `  k ) ) )
6966, 67, 68mpanl12 433 . . . . . . 7  |-  ( ( ( ! `  k
)  e.  RR  /\  0  <  ( ! `  k ) )  -> 
0  <_  ( 1  /  ( ! `  k ) ) )
7064, 65, 69syl2anc 409 . . . . . 6  |-  ( ( T.  /\  k  e. 
NN0 )  ->  0  <_  ( 1  /  ( ! `  k )
) )
7170, 60breqtrrd 3994 . . . . 5  |-  ( ( T.  /\  k  e. 
NN0 )  ->  0  <_  ( G `  k
) )
722, 49, 59, 63, 71climserle 11253 . . . 4  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  1 )  <_  _e )
7348, 72eqbrtrrd 3990 . . 3  |-  ( T. 
->  2  <_  _e )
7473mptru 1344 . 2  |-  2  <_  _e
75 nnuz 9479 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
76 1zzd 9199 . . . . . 6  |-  ( T. 
->  1  e.  ZZ )
771a1i 9 . . . . . . . 8  |-  ( T. 
->  0  e.  NN0 )
7863recnd 7908 . . . . . . . 8  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( G `  k )  e.  CC )
792, 77, 78, 59clim2ser 11245 . . . . . . 7  |-  ( T. 
->  seq ( 0  +  1 ) (  +  ,  G )  ~~>  ( _e 
-  (  seq 0
(  +  ,  G
) `  0 )
) )
80 0p1e1 8952 . . . . . . . 8  |-  ( 0  +  1 )  =  1
81 seqeq1 10356 . . . . . . . 8  |-  ( ( 0  +  1 )  =  1  ->  seq ( 0  +  1 ) (  +  ,  G )  =  seq 1 (  +  ,  G ) )
8280, 81ax-mp 5 . . . . . . 7  |-  seq (
0  +  1 ) (  +  ,  G
)  =  seq 1
(  +  ,  G
)
8332mptru 1344 . . . . . . . 8  |-  (  seq 0 (  +  ,  G ) `  0
)  =  1
8483oveq2i 5837 . . . . . . 7  |-  ( _e 
-  (  seq 0
(  +  ,  G
) `  0 )
)  =  ( _e 
-  1 )
8579, 82, 843brtr3g 3999 . . . . . 6  |-  ( T. 
->  seq 1 (  +  ,  G )  ~~>  ( _e 
-  1 ) )
86 2cnd 8911 . . . . . . . 8  |-  ( T. 
->  2  e.  CC )
87 halfre 9051 . . . . . . . . . . . . . . 15  |-  ( 1  /  2 )  e.  RR
8887a1i 9 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  /  2 )  e.  RR )
89 id 19 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
9088, 89reexpcld 10577 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  /  2 ) ^ k )  e.  RR )
91 oveq2 5834 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
( 1  /  2
) ^ n )  =  ( ( 1  /  2 ) ^
k ) )
92 eqid 2157 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) )
9391, 92fvmptg 5546 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  ( ( 1  / 
2 ) ^ k
)  e.  RR )  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k )  =  ( ( 1  / 
2 ) ^ k
) )
9490, 93mpdan 418 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k )  =  ( ( 1  / 
2 ) ^ k
) )
9594adantl 275 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  =  ( ( 1  /  2 ) ^ k ) )
96 simpr 109 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e. 
NN0 )  ->  k  e.  NN0 )
97 reexpcl 10445 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  / 
2 ) ^ k
)  e.  RR )
9887, 96, 97sylancr 411 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 1  /  2
) ^ k )  e.  RR )
9998recnd 7908 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 1  /  2
) ^ k )  e.  CC )
10095, 99eqeltrd 2234 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  e.  CC )
101 1lt2 9007 . . . . . . . . . . . . . 14  |-  1  <  2
102 2re 8908 . . . . . . . . . . . . . . 15  |-  2  e.  RR
103 0le2 8928 . . . . . . . . . . . . . . 15  |-  0  <_  2
104 absid 10982 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  RR  /\  0  <_  2 )  -> 
( abs `  2
)  =  2 )
105102, 103, 104mp2an 423 . . . . . . . . . . . . . 14  |-  ( abs `  2 )  =  2
106101, 105breqtrri 3993 . . . . . . . . . . . . 13  |-  1  <  ( abs `  2
)
107106a1i 9 . . . . . . . . . . . 12  |-  ( T. 
->  1  <  ( abs `  2 ) )
10886, 107, 95georeclim 11421 . . . . . . . . . . 11  |-  ( T. 
->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( 2  /  (
2  -  1 ) ) )
109 2m1e1 8956 . . . . . . . . . . . . 13  |-  ( 2  -  1 )  =  1
110109oveq2i 5837 . . . . . . . . . . . 12  |-  ( 2  /  ( 2  -  1 ) )  =  ( 2  /  1
)
111 2cn 8909 . . . . . . . . . . . . 13  |-  2  e.  CC
112111div1i 8617 . . . . . . . . . . . 12  |-  ( 2  /  1 )  =  2
113110, 112eqtri 2178 . . . . . . . . . . 11  |-  ( 2  /  ( 2  -  1 ) )  =  2
114108, 113breqtrdi 4007 . . . . . . . . . 10  |-  ( T. 
->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  2 )
1152, 77, 100, 114clim2ser 11245 . . . . . . . . 9  |-  ( T. 
->  seq ( 0  +  1 ) (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( 2  -  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) ) ` 
0 ) ) )
116 seqeq1 10356 . . . . . . . . . 10  |-  ( ( 0  +  1 )  =  1  ->  seq ( 0  +  1 ) (  +  , 
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) )  =  seq 1 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) ) )
11780, 116ax-mp 5 . . . . . . . . 9  |-  seq (
0  +  1 ) (  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) )  =  seq 1
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) )
1186adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  k  e.  ( ZZ>= `  0 )
)  ->  k  e.  NN0 )
11994, 90eqeltrd 2234 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k )  e.  RR )
120118, 119syl 14 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( (
n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k )  e.  RR )
12120, 120, 18seq3-1 10368 . . . . . . . . . . . . 13  |-  ( T. 
->  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 )  =  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 0 ) )
122 halfcn 9052 . . . . . . . . . . . . . . . . 17  |-  ( 1  /  2 )  e.  CC
123 exp0 10432 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  /  2 )  e.  CC  ->  (
( 1  /  2
) ^ 0 )  =  1 )
124122, 123ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( 1  /  2 ) ^ 0 )  =  1
125124, 35eqeltri 2230 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  2 ) ^ 0 )  e. 
NN0
126 oveq2 5834 . . . . . . . . . . . . . . . 16  |-  ( n  =  0  ->  (
( 1  /  2
) ^ n )  =  ( ( 1  /  2 ) ^
0 ) )
127126, 92fvmptg 5546 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  NN0  /\  ( ( 1  / 
2 ) ^ 0 )  e.  NN0 )  ->  ( ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) ` 
0 )  =  ( ( 1  /  2
) ^ 0 ) )
1281, 125, 127mp2an 423 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 0 )  =  ( ( 1  / 
2 ) ^ 0 )
129128, 124eqtri 2178 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 0 )  =  1
130121, 129eqtrdi 2206 . . . . . . . . . . . 12  |-  ( T. 
->  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 )  =  1 )
131130mptru 1344 . . . . . . . . . . 11  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) ) ` 
0 )  =  1
132131oveq2i 5837 . . . . . . . . . 10  |-  ( 2  -  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 ) )  =  ( 2  -  1 )
133132, 109eqtri 2178 . . . . . . . . 9  |-  ( 2  -  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 ) )  =  1
134115, 117, 1333brtr3g 3999 . . . . . . . 8  |-  ( T. 
->  seq 1 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  1 )
135 nnnn0 9102 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  NN0 )
136135, 100sylan2 284 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  e.  CC )
137102a1i 9 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  2  e.  RR )
138135, 90syl 14 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( 1  /  2
) ^ k )  e.  RR )
139137, 138remulcld 7910 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  e.  RR )
14091oveq2d 5842 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
2  x.  ( ( 1  /  2 ) ^ n ) )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
141 erelem1.1 . . . . . . . . . . . 12  |-  F  =  ( n  e.  NN  |->  ( 2  x.  (
( 1  /  2
) ^ n ) ) )
142140, 141fvmptg 5546 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  ( 2  x.  (
( 1  /  2
) ^ k ) )  e.  RR )  ->  ( F `  k )  =  ( 2  x.  ( ( 1  /  2 ) ^ k ) ) )
143139, 142mpdan 418 . . . . . . . . . 10  |-  ( k  e.  NN  ->  ( F `  k )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
144143adantl 275 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
145135, 95sylan2 284 . . . . . . . . . 10  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  =  ( ( 1  /  2 ) ^ k ) )
146145oveq2d 5842 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  (
2  x.  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k ) )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
147144, 146eqtr4d 2193 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  =  ( 2  x.  ( ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) `  k ) ) )
14875, 76, 86, 134, 136, 147isermulc2 11248 . . . . . . 7  |-  ( T. 
->  seq 1 (  +  ,  F )  ~~>  ( 2  x.  1 ) )
149 2t1e2 8991 . . . . . . 7  |-  ( 2  x.  1 )  =  2
150148, 149breqtrdi 4007 . . . . . 6  |-  ( T. 
->  seq 1 (  +  ,  F )  ~~>  2 )
151135, 63sylan2 284 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
152 remulcl 7862 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( ( 1  / 
2 ) ^ k
)  e.  RR )  ->  ( 2  x.  ( ( 1  / 
2 ) ^ k
) )  e.  RR )
153102, 98, 152sylancr 411 . . . . . . . 8  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  e.  RR )
154135, 153sylan2 284 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  e.  RR )
155144, 154eqeltrd 2234 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
156 faclbnd2 10627 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 2 ^ k )  /  2 )  <_ 
( ! `  k
) )
157156adantl 275 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 2 ^ k
)  /  2 )  <_  ( ! `  k ) )
158 2nn 8999 . . . . . . . . . . . . . 14  |-  2  e.  NN
159 nnexpcl 10441 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
160158, 96, 159sylancr 411 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k )  e.  NN )
161160nnrpd 9607 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k )  e.  RR+ )
162161rphalfcld 9622 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 2 ^ k
)  /  2 )  e.  RR+ )
16361nnrpd 9607 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( ! `  k )  e.  RR+ )
164162, 163lerecd 9629 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( ( 2 ^ k )  /  2
)  <_  ( ! `  k )  <->  ( 1  /  ( ! `  k ) )  <_ 
( 1  /  (
( 2 ^ k
)  /  2 ) ) ) )
165157, 164mpbid 146 . . . . . . . . 9  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ! `
 k ) )  <_  ( 1  / 
( ( 2 ^ k )  /  2
) ) )
166 2cnd 8911 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  2  e.  CC )
167160nncnd 8852 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k )  e.  CC )
168160nnap0d 8884 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k ) #  0 )
169166, 167, 168divrecapd 8670 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  /  ( 2 ^ k ) )  =  ( 2  x.  ( 1  /  (
2 ^ k ) ) ) )
170 2ap0 8931 . . . . . . . . . . . 12  |-  2 #  0
171170a1i 9 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  2 #  0 )
172167, 166, 168, 171recdivapd 8684 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ( 2 ^ k )  /  2 ) )  =  ( 2  / 
( 2 ^ k
) ) )
173 nn0z 9192 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  ZZ )
174173adantl 275 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e. 
NN0 )  ->  k  e.  ZZ )
175166, 171, 174exprecapd 10568 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 1  /  2
) ^ k )  =  ( 1  / 
( 2 ^ k
) ) )
176175oveq2d 5842 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  =  ( 2  x.  ( 1  /  (
2 ^ k ) ) ) )
177169, 172, 1763eqtr4rd 2201 . . . . . . . . 9  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  =  ( 1  / 
( ( 2 ^ k )  /  2
) ) )
178165, 177breqtrrd 3994 . . . . . . . 8  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ! `
 k ) )  <_  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
179135, 178sylan2 284 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( ! `
 k ) )  <_  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
180135, 60sylan2 284 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  =  ( 1  / 
( ! `  k
) ) )
181179, 180, 1443brtr4d 3998 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  <_  ( F `  k
) )
18275, 76, 85, 150, 151, 155, 181iserle 11250 . . . . 5  |-  ( T. 
->  ( _e  -  1 )  <_  2 )
183182mptru 1344 . . . 4  |-  ( _e 
-  1 )  <_ 
2
184 ere 11578 . . . . 5  |-  _e  e.  RR
185184, 66, 102lesubaddi 8385 . . . 4  |-  ( ( _e  -  1 )  <_  2  <->  _e  <_  ( 2  +  1 ) )
186183, 185mpbi 144 . . 3  |-  _e  <_  ( 2  +  1 )
187 df-3 8898 . . 3  |-  3  =  ( 2  +  1 )
188186, 187breqtrri 3993 . 2  |-  _e  <_  3
18974, 188pm3.2i 270 1  |-  ( 2  <_  _e  /\  _e  <_  3 )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1335   T. wtru 1336    e. wcel 2128   class class class wbr 3967    |-> cmpt 4027   ` cfv 5172  (class class class)co 5826   CCcc 7732   RRcr 7733   0cc0 7734   1c1 7735    + caddc 7737    x. cmul 7739    < clt 7914    <_ cle 7915    - cmin 8050   # cap 8460    / cdiv 8549   NNcn 8838   2c2 8889   3c3 8890   NN0cn0 9095   ZZcz 9172   ZZ>=cuz 9444    seqcseq 10353   ^cexp 10427   !cfa 10610   abscabs 10908    ~~> cli 11186   expce 11550   _eceu 11551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852  ax-arch 7853  ax-caucvg 7854
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-id 4255  df-po 4258  df-iso 4259  df-iord 4328  df-on 4330  df-ilim 4331  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-isom 5181  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-irdg 6319  df-frec 6340  df-1o 6365  df-oadd 6369  df-er 6482  df-en 6688  df-dom 6689  df-fin 6690  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550  df-inn 8839  df-2 8897  df-3 8898  df-4 8899  df-n0 9096  df-z 9173  df-uz 9445  df-q 9535  df-rp 9567  df-ico 9804  df-fz 9919  df-fzo 10051  df-seqfrec 10354  df-exp 10428  df-fac 10611  df-ihash 10661  df-cj 10753  df-re 10754  df-im 10755  df-rsqrt 10909  df-abs 10910  df-clim 11187  df-sumdc 11262  df-ef 11556  df-e 11557
This theorem is referenced by:  egt2lt3  11687
  Copyright terms: Public domain W3C validator