ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ege2le3 Unicode version

Theorem ege2le3 12015
Description: Euler's constant  _e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
erelem1.1  |-  F  =  ( n  e.  NN  |->  ( 2  x.  (
( 1  /  2
) ^ n ) ) )
erelem1.2  |-  G  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
Assertion
Ref Expression
ege2le3  |-  ( 2  <_  _e  /\  _e  <_  3 )

Proof of Theorem ege2le3
Dummy variables  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 9312 . . . . . . . . 9  |-  0  e.  NN0
2 nn0uz 9685 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
31, 2eleqtri 2280 . . . . . . . 8  |-  0  e.  ( ZZ>= `  0 )
43a1i 9 . . . . . . 7  |-  ( T. 
->  0  e.  ( ZZ>=
`  0 ) )
5 elnn0uz 9688 . . . . . . . . . 10  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
65biimpri 133 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
7 faccl 10882 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
87nnrecred 9085 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 1  /  ( ! `  k ) )  e.  RR )
9 fveq2 5578 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
109oveq2d 5962 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
( ! `  k
) ) )
11 erelem1.2 . . . . . . . . . . . 12  |-  G  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
1210, 11fvmptg 5657 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  ( 1  /  ( ! `  k )
)  e.  RR )  ->  ( G `  k )  =  ( 1  /  ( ! `
 k ) ) )
138, 12mpdan 421 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( G `
 k )  =  ( 1  /  ( ! `  k )
) )
1413, 8eqeltrd 2282 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( G `
 k )  e.  RR )
156, 14syl 14 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  0
)  ->  ( G `  k )  e.  RR )
1615adantl 277 . . . . . . 7  |-  ( ( T.  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( G `  k )  e.  RR )
17 readdcl 8053 . . . . . . . 8  |-  ( ( k  e.  RR  /\  y  e.  RR )  ->  ( k  +  y )  e.  RR )
1817adantl 277 . . . . . . 7  |-  ( ( T.  /\  ( k  e.  RR  /\  y  e.  RR ) )  -> 
( k  +  y )  e.  RR )
194, 16, 18seq3p1 10612 . . . . . 6  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  ( 0  +  1 ) )  =  ( (  seq 0 (  +  ,  G ) `  0
)  +  ( G `
 ( 0  +  1 ) ) ) )
20 0zd 9386 . . . . . . . . 9  |-  ( T. 
->  0  e.  ZZ )
2120, 16, 18seq3-1 10609 . . . . . . . 8  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  0 )  =  ( G ` 
0 ) )
22 fveq2 5578 . . . . . . . . . . . . 13  |-  ( n  =  0  ->  ( ! `  n )  =  ( ! ` 
0 ) )
23 fac0 10875 . . . . . . . . . . . . 13  |-  ( ! `
 0 )  =  1
2422, 23eqtrdi 2254 . . . . . . . . . . . 12  |-  ( n  =  0  ->  ( ! `  n )  =  1 )
2524oveq2d 5962 . . . . . . . . . . 11  |-  ( n  =  0  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
1 ) )
26 ax-1cn 8020 . . . . . . . . . . . 12  |-  1  e.  CC
2726div1i 8815 . . . . . . . . . . 11  |-  ( 1  /  1 )  =  1
2825, 27eqtrdi 2254 . . . . . . . . . 10  |-  ( n  =  0  ->  (
1  /  ( ! `
 n ) )  =  1 )
29 1ex 8069 . . . . . . . . . 10  |-  1  e.  _V
3028, 11, 29fvmpt 5658 . . . . . . . . 9  |-  ( 0  e.  NN0  ->  ( G `
 0 )  =  1 )
311, 30mp1i 10 . . . . . . . 8  |-  ( T. 
->  ( G `  0
)  =  1 )
3221, 31eqtrd 2238 . . . . . . 7  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  0 )  =  1 )
33 1e0p1 9547 . . . . . . . . 9  |-  1  =  ( 0  +  1 )
3433fveq2i 5581 . . . . . . . 8  |-  ( G `
 1 )  =  ( G `  (
0  +  1 ) )
35 1nn0 9313 . . . . . . . . 9  |-  1  e.  NN0
36 fveq2 5578 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  ( ! `  n )  =  ( ! ` 
1 ) )
37 fac1 10876 . . . . . . . . . . . . 13  |-  ( ! `
 1 )  =  1
3836, 37eqtrdi 2254 . . . . . . . . . . . 12  |-  ( n  =  1  ->  ( ! `  n )  =  1 )
3938oveq2d 5962 . . . . . . . . . . 11  |-  ( n  =  1  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
1 ) )
4039, 27eqtrdi 2254 . . . . . . . . . 10  |-  ( n  =  1  ->  (
1  /  ( ! `
 n ) )  =  1 )
4140, 11, 29fvmpt 5658 . . . . . . . . 9  |-  ( 1  e.  NN0  ->  ( G `
 1 )  =  1 )
4235, 41mp1i 10 . . . . . . . 8  |-  ( T. 
->  ( G `  1
)  =  1 )
4334, 42eqtr3id 2252 . . . . . . 7  |-  ( T. 
->  ( G `  (
0  +  1 ) )  =  1 )
4432, 43oveq12d 5964 . . . . . 6  |-  ( T. 
->  ( (  seq 0
(  +  ,  G
) `  0 )  +  ( G `  ( 0  +  1 ) ) )  =  ( 1  +  1 ) )
4519, 44eqtrd 2238 . . . . 5  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  ( 0  +  1 ) )  =  ( 1  +  1 ) )
4633fveq2i 5581 . . . . 5  |-  (  seq 0 (  +  ,  G ) `  1
)  =  (  seq 0 (  +  ,  G ) `  (
0  +  1 ) )
47 df-2 9097 . . . . 5  |-  2  =  ( 1  +  1 )
4845, 46, 473eqtr4g 2263 . . . 4  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  1 )  =  2 )
4935a1i 9 . . . . 5  |-  ( T. 
->  1  e.  NN0 )
50 nn0z 9394 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e.  ZZ )
51 1exp 10715 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
5250, 51syl 14 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( 1 ^ n )  =  1 )
5352oveq1d 5961 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( ( 1 ^ n )  /  ( ! `  n ) )  =  ( 1  /  ( ! `  n )
) )
5453mpteq2ia 4131 . . . . . . . . 9  |-  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( 1  / 
( ! `  n
) ) )
5511, 54eqtr4i 2229 . . . . . . . 8  |-  G  =  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n )
) )
5655efcvg 12010 . . . . . . 7  |-  ( 1  e.  CC  ->  seq 0 (  +  ,  G )  ~~>  ( exp `  1 ) )
5726, 56mp1i 10 . . . . . 6  |-  ( T. 
->  seq 0 (  +  ,  G )  ~~>  ( exp `  1 ) )
58 df-e 11993 . . . . . 6  |-  _e  =  ( exp `  1 )
5957, 58breqtrrdi 4087 . . . . 5  |-  ( T. 
->  seq 0 (  +  ,  G )  ~~>  _e )
6013adantl 277 . . . . . 6  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( G `  k )  =  ( 1  / 
( ! `  k
) ) )
617adantl 277 . . . . . . 7  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( ! `  k )  e.  NN )
6261nnrecred 9085 . . . . . 6  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ! `
 k ) )  e.  RR )
6360, 62eqeltrd 2282 . . . . 5  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( G `  k )  e.  RR )
6461nnred 9051 . . . . . . 7  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( ! `  k )  e.  RR )
6561nngt0d 9082 . . . . . . 7  |-  ( ( T.  /\  k  e. 
NN0 )  ->  0  <  ( ! `  k
) )
66 1re 8073 . . . . . . . 8  |-  1  e.  RR
67 0le1 8556 . . . . . . . 8  |-  0  <_  1
68 divge0 8948 . . . . . . . 8  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( ( ! `
 k )  e.  RR  /\  0  < 
( ! `  k
) ) )  -> 
0  <_  ( 1  /  ( ! `  k ) ) )
6966, 67, 68mpanl12 436 . . . . . . 7  |-  ( ( ( ! `  k
)  e.  RR  /\  0  <  ( ! `  k ) )  -> 
0  <_  ( 1  /  ( ! `  k ) ) )
7064, 65, 69syl2anc 411 . . . . . 6  |-  ( ( T.  /\  k  e. 
NN0 )  ->  0  <_  ( 1  /  ( ! `  k )
) )
7170, 60breqtrrd 4073 . . . . 5  |-  ( ( T.  /\  k  e. 
NN0 )  ->  0  <_  ( G `  k
) )
722, 49, 59, 63, 71climserle 11689 . . . 4  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  1 )  <_  _e )
7348, 72eqbrtrrd 4069 . . 3  |-  ( T. 
->  2  <_  _e )
7473mptru 1382 . 2  |-  2  <_  _e
75 nnuz 9686 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
76 1zzd 9401 . . . . . 6  |-  ( T. 
->  1  e.  ZZ )
771a1i 9 . . . . . . . 8  |-  ( T. 
->  0  e.  NN0 )
7863recnd 8103 . . . . . . . 8  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( G `  k )  e.  CC )
792, 77, 78, 59clim2ser 11681 . . . . . . 7  |-  ( T. 
->  seq ( 0  +  1 ) (  +  ,  G )  ~~>  ( _e 
-  (  seq 0
(  +  ,  G
) `  0 )
) )
80 0p1e1 9152 . . . . . . . 8  |-  ( 0  +  1 )  =  1
81 seqeq1 10597 . . . . . . . 8  |-  ( ( 0  +  1 )  =  1  ->  seq ( 0  +  1 ) (  +  ,  G )  =  seq 1 (  +  ,  G ) )
8280, 81ax-mp 5 . . . . . . 7  |-  seq (
0  +  1 ) (  +  ,  G
)  =  seq 1
(  +  ,  G
)
8332mptru 1382 . . . . . . . 8  |-  (  seq 0 (  +  ,  G ) `  0
)  =  1
8483oveq2i 5957 . . . . . . 7  |-  ( _e 
-  (  seq 0
(  +  ,  G
) `  0 )
)  =  ( _e 
-  1 )
8579, 82, 843brtr3g 4078 . . . . . 6  |-  ( T. 
->  seq 1 (  +  ,  G )  ~~>  ( _e 
-  1 ) )
86 2cnd 9111 . . . . . . . 8  |-  ( T. 
->  2  e.  CC )
87 halfre 9252 . . . . . . . . . . . . . . 15  |-  ( 1  /  2 )  e.  RR
8887a1i 9 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  /  2 )  e.  RR )
89 id 19 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
9088, 89reexpcld 10837 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  /  2 ) ^ k )  e.  RR )
91 oveq2 5954 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
( 1  /  2
) ^ n )  =  ( ( 1  /  2 ) ^
k ) )
92 eqid 2205 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) )
9391, 92fvmptg 5657 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  ( ( 1  / 
2 ) ^ k
)  e.  RR )  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k )  =  ( ( 1  / 
2 ) ^ k
) )
9490, 93mpdan 421 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k )  =  ( ( 1  / 
2 ) ^ k
) )
9594adantl 277 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  =  ( ( 1  /  2 ) ^ k ) )
96 simpr 110 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e. 
NN0 )  ->  k  e.  NN0 )
97 reexpcl 10703 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  / 
2 ) ^ k
)  e.  RR )
9887, 96, 97sylancr 414 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 1  /  2
) ^ k )  e.  RR )
9998recnd 8103 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 1  /  2
) ^ k )  e.  CC )
10095, 99eqeltrd 2282 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  e.  CC )
101 1lt2 9208 . . . . . . . . . . . . . 14  |-  1  <  2
102 2re 9108 . . . . . . . . . . . . . . 15  |-  2  e.  RR
103 0le2 9128 . . . . . . . . . . . . . . 15  |-  0  <_  2
104 absid 11415 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  RR  /\  0  <_  2 )  -> 
( abs `  2
)  =  2 )
105102, 103, 104mp2an 426 . . . . . . . . . . . . . 14  |-  ( abs `  2 )  =  2
106101, 105breqtrri 4072 . . . . . . . . . . . . 13  |-  1  <  ( abs `  2
)
107106a1i 9 . . . . . . . . . . . 12  |-  ( T. 
->  1  <  ( abs `  2 ) )
10886, 107, 95georeclim 11857 . . . . . . . . . . 11  |-  ( T. 
->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( 2  /  (
2  -  1 ) ) )
109 2m1e1 9156 . . . . . . . . . . . . 13  |-  ( 2  -  1 )  =  1
110109oveq2i 5957 . . . . . . . . . . . 12  |-  ( 2  /  ( 2  -  1 ) )  =  ( 2  /  1
)
111 2cn 9109 . . . . . . . . . . . . 13  |-  2  e.  CC
112111div1i 8815 . . . . . . . . . . . 12  |-  ( 2  /  1 )  =  2
113110, 112eqtri 2226 . . . . . . . . . . 11  |-  ( 2  /  ( 2  -  1 ) )  =  2
114108, 113breqtrdi 4086 . . . . . . . . . 10  |-  ( T. 
->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  2 )
1152, 77, 100, 114clim2ser 11681 . . . . . . . . 9  |-  ( T. 
->  seq ( 0  +  1 ) (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( 2  -  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) ) ` 
0 ) ) )
116 seqeq1 10597 . . . . . . . . . 10  |-  ( ( 0  +  1 )  =  1  ->  seq ( 0  +  1 ) (  +  , 
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) )  =  seq 1 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) ) )
11780, 116ax-mp 5 . . . . . . . . 9  |-  seq (
0  +  1 ) (  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) )  =  seq 1
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) )
1186adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  k  e.  ( ZZ>= `  0 )
)  ->  k  e.  NN0 )
11994, 90eqeltrd 2282 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k )  e.  RR )
120118, 119syl 14 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( (
n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k )  e.  RR )
12120, 120, 18seq3-1 10609 . . . . . . . . . . . . 13  |-  ( T. 
->  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 )  =  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 0 ) )
122 halfcn 9253 . . . . . . . . . . . . . . . . 17  |-  ( 1  /  2 )  e.  CC
123 exp0 10690 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  /  2 )  e.  CC  ->  (
( 1  /  2
) ^ 0 )  =  1 )
124122, 123ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( 1  /  2 ) ^ 0 )  =  1
125124, 35eqeltri 2278 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  2 ) ^ 0 )  e. 
NN0
126 oveq2 5954 . . . . . . . . . . . . . . . 16  |-  ( n  =  0  ->  (
( 1  /  2
) ^ n )  =  ( ( 1  /  2 ) ^
0 ) )
127126, 92fvmptg 5657 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  NN0  /\  ( ( 1  / 
2 ) ^ 0 )  e.  NN0 )  ->  ( ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) ` 
0 )  =  ( ( 1  /  2
) ^ 0 ) )
1281, 125, 127mp2an 426 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 0 )  =  ( ( 1  / 
2 ) ^ 0 )
129128, 124eqtri 2226 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 0 )  =  1
130121, 129eqtrdi 2254 . . . . . . . . . . . 12  |-  ( T. 
->  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 )  =  1 )
131130mptru 1382 . . . . . . . . . . 11  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) ) ` 
0 )  =  1
132131oveq2i 5957 . . . . . . . . . 10  |-  ( 2  -  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 ) )  =  ( 2  -  1 )
133132, 109eqtri 2226 . . . . . . . . 9  |-  ( 2  -  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 ) )  =  1
134115, 117, 1333brtr3g 4078 . . . . . . . 8  |-  ( T. 
->  seq 1 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  1 )
135 nnnn0 9304 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  NN0 )
136135, 100sylan2 286 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  e.  CC )
137102a1i 9 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  2  e.  RR )
138135, 90syl 14 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( 1  /  2
) ^ k )  e.  RR )
139137, 138remulcld 8105 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  e.  RR )
14091oveq2d 5962 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
2  x.  ( ( 1  /  2 ) ^ n ) )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
141 erelem1.1 . . . . . . . . . . . 12  |-  F  =  ( n  e.  NN  |->  ( 2  x.  (
( 1  /  2
) ^ n ) ) )
142140, 141fvmptg 5657 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  ( 2  x.  (
( 1  /  2
) ^ k ) )  e.  RR )  ->  ( F `  k )  =  ( 2  x.  ( ( 1  /  2 ) ^ k ) ) )
143139, 142mpdan 421 . . . . . . . . . 10  |-  ( k  e.  NN  ->  ( F `  k )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
144143adantl 277 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
145135, 95sylan2 286 . . . . . . . . . 10  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  =  ( ( 1  /  2 ) ^ k ) )
146145oveq2d 5962 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  (
2  x.  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k ) )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
147144, 146eqtr4d 2241 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  =  ( 2  x.  ( ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) `  k ) ) )
14875, 76, 86, 134, 136, 147isermulc2 11684 . . . . . . 7  |-  ( T. 
->  seq 1 (  +  ,  F )  ~~>  ( 2  x.  1 ) )
149 2t1e2 9192 . . . . . . 7  |-  ( 2  x.  1 )  =  2
150148, 149breqtrdi 4086 . . . . . 6  |-  ( T. 
->  seq 1 (  +  ,  F )  ~~>  2 )
151135, 63sylan2 286 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
152 remulcl 8055 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( ( 1  / 
2 ) ^ k
)  e.  RR )  ->  ( 2  x.  ( ( 1  / 
2 ) ^ k
) )  e.  RR )
153102, 98, 152sylancr 414 . . . . . . . 8  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  e.  RR )
154135, 153sylan2 286 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  e.  RR )
155144, 154eqeltrd 2282 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
156 faclbnd2 10889 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 2 ^ k )  /  2 )  <_ 
( ! `  k
) )
157156adantl 277 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 2 ^ k
)  /  2 )  <_  ( ! `  k ) )
158 2nn 9200 . . . . . . . . . . . . . 14  |-  2  e.  NN
159 nnexpcl 10699 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
160158, 96, 159sylancr 414 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k )  e.  NN )
161160nnrpd 9818 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k )  e.  RR+ )
162161rphalfcld 9833 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 2 ^ k
)  /  2 )  e.  RR+ )
16361nnrpd 9818 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( ! `  k )  e.  RR+ )
164162, 163lerecd 9840 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( ( 2 ^ k )  /  2
)  <_  ( ! `  k )  <->  ( 1  /  ( ! `  k ) )  <_ 
( 1  /  (
( 2 ^ k
)  /  2 ) ) ) )
165157, 164mpbid 147 . . . . . . . . 9  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ! `
 k ) )  <_  ( 1  / 
( ( 2 ^ k )  /  2
) ) )
166 2cnd 9111 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  2  e.  CC )
167160nncnd 9052 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k )  e.  CC )
168160nnap0d 9084 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k ) #  0 )
169166, 167, 168divrecapd 8868 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  /  ( 2 ^ k ) )  =  ( 2  x.  ( 1  /  (
2 ^ k ) ) ) )
170 2ap0 9131 . . . . . . . . . . . 12  |-  2 #  0
171170a1i 9 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  2 #  0 )
172167, 166, 168, 171recdivapd 8882 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ( 2 ^ k )  /  2 ) )  =  ( 2  / 
( 2 ^ k
) ) )
173 nn0z 9394 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  ZZ )
174173adantl 277 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e. 
NN0 )  ->  k  e.  ZZ )
175166, 171, 174exprecapd 10828 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 1  /  2
) ^ k )  =  ( 1  / 
( 2 ^ k
) ) )
176175oveq2d 5962 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  =  ( 2  x.  ( 1  /  (
2 ^ k ) ) ) )
177169, 172, 1763eqtr4rd 2249 . . . . . . . . 9  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  =  ( 1  / 
( ( 2 ^ k )  /  2
) ) )
178165, 177breqtrrd 4073 . . . . . . . 8  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ! `
 k ) )  <_  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
179135, 178sylan2 286 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( ! `
 k ) )  <_  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
180135, 60sylan2 286 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  =  ( 1  / 
( ! `  k
) ) )
181179, 180, 1443brtr4d 4077 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  <_  ( F `  k
) )
18275, 76, 85, 150, 151, 155, 181iserle 11686 . . . . 5  |-  ( T. 
->  ( _e  -  1 )  <_  2 )
183182mptru 1382 . . . 4  |-  ( _e 
-  1 )  <_ 
2
184 ere 12014 . . . . 5  |-  _e  e.  RR
185184, 66, 102lesubaddi 8581 . . . 4  |-  ( ( _e  -  1 )  <_  2  <->  _e  <_  ( 2  +  1 ) )
186183, 185mpbi 145 . . 3  |-  _e  <_  ( 2  +  1 )
187 df-3 9098 . . 3  |-  3  =  ( 2  +  1 )
188186, 187breqtrri 4072 . 2  |-  _e  <_  3
18974, 188pm3.2i 272 1  |-  ( 2  <_  _e  /\  _e  <_  3 )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   T. wtru 1374    e. wcel 2176   class class class wbr 4045    |-> cmpt 4106   ` cfv 5272  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927   1c1 7928    + caddc 7930    x. cmul 7932    < clt 8109    <_ cle 8110    - cmin 8245   # cap 8656    / cdiv 8747   NNcn 9038   2c2 9089   3c3 9090   NN0cn0 9297   ZZcz 9374   ZZ>=cuz 9650    seqcseq 10594   ^cexp 10685   !cfa 10872   abscabs 11341    ~~> cli 11622   expce 11986   _eceu 11987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-ico 10018  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-fac 10873  df-ihash 10923  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-sumdc 11698  df-ef 11992  df-e 11993
This theorem is referenced by:  egt2lt3  12124
  Copyright terms: Public domain W3C validator