ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ege2le3 Unicode version

Theorem ege2le3 11814
Description: Euler's constant  _e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
erelem1.1  |-  F  =  ( n  e.  NN  |->  ( 2  x.  (
( 1  /  2
) ^ n ) ) )
erelem1.2  |-  G  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
Assertion
Ref Expression
ege2le3  |-  ( 2  <_  _e  /\  _e  <_  3 )

Proof of Theorem ege2le3
Dummy variables  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 9255 . . . . . . . . 9  |-  0  e.  NN0
2 nn0uz 9627 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
31, 2eleqtri 2268 . . . . . . . 8  |-  0  e.  ( ZZ>= `  0 )
43a1i 9 . . . . . . 7  |-  ( T. 
->  0  e.  ( ZZ>=
`  0 ) )
5 elnn0uz 9630 . . . . . . . . . 10  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
65biimpri 133 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
7 faccl 10806 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
87nnrecred 9029 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 1  /  ( ! `  k ) )  e.  RR )
9 fveq2 5554 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
109oveq2d 5934 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
( ! `  k
) ) )
11 erelem1.2 . . . . . . . . . . . 12  |-  G  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
1210, 11fvmptg 5633 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  ( 1  /  ( ! `  k )
)  e.  RR )  ->  ( G `  k )  =  ( 1  /  ( ! `
 k ) ) )
138, 12mpdan 421 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( G `
 k )  =  ( 1  /  ( ! `  k )
) )
1413, 8eqeltrd 2270 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( G `
 k )  e.  RR )
156, 14syl 14 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  0
)  ->  ( G `  k )  e.  RR )
1615adantl 277 . . . . . . 7  |-  ( ( T.  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( G `  k )  e.  RR )
17 readdcl 7998 . . . . . . . 8  |-  ( ( k  e.  RR  /\  y  e.  RR )  ->  ( k  +  y )  e.  RR )
1817adantl 277 . . . . . . 7  |-  ( ( T.  /\  ( k  e.  RR  /\  y  e.  RR ) )  -> 
( k  +  y )  e.  RR )
194, 16, 18seq3p1 10536 . . . . . 6  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  ( 0  +  1 ) )  =  ( (  seq 0 (  +  ,  G ) `  0
)  +  ( G `
 ( 0  +  1 ) ) ) )
20 0zd 9329 . . . . . . . . 9  |-  ( T. 
->  0  e.  ZZ )
2120, 16, 18seq3-1 10533 . . . . . . . 8  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  0 )  =  ( G ` 
0 ) )
22 fveq2 5554 . . . . . . . . . . . . 13  |-  ( n  =  0  ->  ( ! `  n )  =  ( ! ` 
0 ) )
23 fac0 10799 . . . . . . . . . . . . 13  |-  ( ! `
 0 )  =  1
2422, 23eqtrdi 2242 . . . . . . . . . . . 12  |-  ( n  =  0  ->  ( ! `  n )  =  1 )
2524oveq2d 5934 . . . . . . . . . . 11  |-  ( n  =  0  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
1 ) )
26 ax-1cn 7965 . . . . . . . . . . . 12  |-  1  e.  CC
2726div1i 8759 . . . . . . . . . . 11  |-  ( 1  /  1 )  =  1
2825, 27eqtrdi 2242 . . . . . . . . . 10  |-  ( n  =  0  ->  (
1  /  ( ! `
 n ) )  =  1 )
29 1ex 8014 . . . . . . . . . 10  |-  1  e.  _V
3028, 11, 29fvmpt 5634 . . . . . . . . 9  |-  ( 0  e.  NN0  ->  ( G `
 0 )  =  1 )
311, 30mp1i 10 . . . . . . . 8  |-  ( T. 
->  ( G `  0
)  =  1 )
3221, 31eqtrd 2226 . . . . . . 7  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  0 )  =  1 )
33 1e0p1 9489 . . . . . . . . 9  |-  1  =  ( 0  +  1 )
3433fveq2i 5557 . . . . . . . 8  |-  ( G `
 1 )  =  ( G `  (
0  +  1 ) )
35 1nn0 9256 . . . . . . . . 9  |-  1  e.  NN0
36 fveq2 5554 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  ( ! `  n )  =  ( ! ` 
1 ) )
37 fac1 10800 . . . . . . . . . . . . 13  |-  ( ! `
 1 )  =  1
3836, 37eqtrdi 2242 . . . . . . . . . . . 12  |-  ( n  =  1  ->  ( ! `  n )  =  1 )
3938oveq2d 5934 . . . . . . . . . . 11  |-  ( n  =  1  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
1 ) )
4039, 27eqtrdi 2242 . . . . . . . . . 10  |-  ( n  =  1  ->  (
1  /  ( ! `
 n ) )  =  1 )
4140, 11, 29fvmpt 5634 . . . . . . . . 9  |-  ( 1  e.  NN0  ->  ( G `
 1 )  =  1 )
4235, 41mp1i 10 . . . . . . . 8  |-  ( T. 
->  ( G `  1
)  =  1 )
4334, 42eqtr3id 2240 . . . . . . 7  |-  ( T. 
->  ( G `  (
0  +  1 ) )  =  1 )
4432, 43oveq12d 5936 . . . . . 6  |-  ( T. 
->  ( (  seq 0
(  +  ,  G
) `  0 )  +  ( G `  ( 0  +  1 ) ) )  =  ( 1  +  1 ) )
4519, 44eqtrd 2226 . . . . 5  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  ( 0  +  1 ) )  =  ( 1  +  1 ) )
4633fveq2i 5557 . . . . 5  |-  (  seq 0 (  +  ,  G ) `  1
)  =  (  seq 0 (  +  ,  G ) `  (
0  +  1 ) )
47 df-2 9041 . . . . 5  |-  2  =  ( 1  +  1 )
4845, 46, 473eqtr4g 2251 . . . 4  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  1 )  =  2 )
4935a1i 9 . . . . 5  |-  ( T. 
->  1  e.  NN0 )
50 nn0z 9337 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e.  ZZ )
51 1exp 10639 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
5250, 51syl 14 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( 1 ^ n )  =  1 )
5352oveq1d 5933 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( ( 1 ^ n )  /  ( ! `  n ) )  =  ( 1  /  ( ! `  n )
) )
5453mpteq2ia 4115 . . . . . . . . 9  |-  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( 1  / 
( ! `  n
) ) )
5511, 54eqtr4i 2217 . . . . . . . 8  |-  G  =  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n )
) )
5655efcvg 11809 . . . . . . 7  |-  ( 1  e.  CC  ->  seq 0 (  +  ,  G )  ~~>  ( exp `  1 ) )
5726, 56mp1i 10 . . . . . 6  |-  ( T. 
->  seq 0 (  +  ,  G )  ~~>  ( exp `  1 ) )
58 df-e 11792 . . . . . 6  |-  _e  =  ( exp `  1 )
5957, 58breqtrrdi 4071 . . . . 5  |-  ( T. 
->  seq 0 (  +  ,  G )  ~~>  _e )
6013adantl 277 . . . . . 6  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( G `  k )  =  ( 1  / 
( ! `  k
) ) )
617adantl 277 . . . . . . 7  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( ! `  k )  e.  NN )
6261nnrecred 9029 . . . . . 6  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ! `
 k ) )  e.  RR )
6360, 62eqeltrd 2270 . . . . 5  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( G `  k )  e.  RR )
6461nnred 8995 . . . . . . 7  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( ! `  k )  e.  RR )
6561nngt0d 9026 . . . . . . 7  |-  ( ( T.  /\  k  e. 
NN0 )  ->  0  <  ( ! `  k
) )
66 1re 8018 . . . . . . . 8  |-  1  e.  RR
67 0le1 8500 . . . . . . . 8  |-  0  <_  1
68 divge0 8892 . . . . . . . 8  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( ( ! `
 k )  e.  RR  /\  0  < 
( ! `  k
) ) )  -> 
0  <_  ( 1  /  ( ! `  k ) ) )
6966, 67, 68mpanl12 436 . . . . . . 7  |-  ( ( ( ! `  k
)  e.  RR  /\  0  <  ( ! `  k ) )  -> 
0  <_  ( 1  /  ( ! `  k ) ) )
7064, 65, 69syl2anc 411 . . . . . 6  |-  ( ( T.  /\  k  e. 
NN0 )  ->  0  <_  ( 1  /  ( ! `  k )
) )
7170, 60breqtrrd 4057 . . . . 5  |-  ( ( T.  /\  k  e. 
NN0 )  ->  0  <_  ( G `  k
) )
722, 49, 59, 63, 71climserle 11488 . . . 4  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  1 )  <_  _e )
7348, 72eqbrtrrd 4053 . . 3  |-  ( T. 
->  2  <_  _e )
7473mptru 1373 . 2  |-  2  <_  _e
75 nnuz 9628 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
76 1zzd 9344 . . . . . 6  |-  ( T. 
->  1  e.  ZZ )
771a1i 9 . . . . . . . 8  |-  ( T. 
->  0  e.  NN0 )
7863recnd 8048 . . . . . . . 8  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( G `  k )  e.  CC )
792, 77, 78, 59clim2ser 11480 . . . . . . 7  |-  ( T. 
->  seq ( 0  +  1 ) (  +  ,  G )  ~~>  ( _e 
-  (  seq 0
(  +  ,  G
) `  0 )
) )
80 0p1e1 9096 . . . . . . . 8  |-  ( 0  +  1 )  =  1
81 seqeq1 10521 . . . . . . . 8  |-  ( ( 0  +  1 )  =  1  ->  seq ( 0  +  1 ) (  +  ,  G )  =  seq 1 (  +  ,  G ) )
8280, 81ax-mp 5 . . . . . . 7  |-  seq (
0  +  1 ) (  +  ,  G
)  =  seq 1
(  +  ,  G
)
8332mptru 1373 . . . . . . . 8  |-  (  seq 0 (  +  ,  G ) `  0
)  =  1
8483oveq2i 5929 . . . . . . 7  |-  ( _e 
-  (  seq 0
(  +  ,  G
) `  0 )
)  =  ( _e 
-  1 )
8579, 82, 843brtr3g 4062 . . . . . 6  |-  ( T. 
->  seq 1 (  +  ,  G )  ~~>  ( _e 
-  1 ) )
86 2cnd 9055 . . . . . . . 8  |-  ( T. 
->  2  e.  CC )
87 halfre 9195 . . . . . . . . . . . . . . 15  |-  ( 1  /  2 )  e.  RR
8887a1i 9 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  /  2 )  e.  RR )
89 id 19 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
9088, 89reexpcld 10761 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  /  2 ) ^ k )  e.  RR )
91 oveq2 5926 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
( 1  /  2
) ^ n )  =  ( ( 1  /  2 ) ^
k ) )
92 eqid 2193 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) )
9391, 92fvmptg 5633 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  ( ( 1  / 
2 ) ^ k
)  e.  RR )  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k )  =  ( ( 1  / 
2 ) ^ k
) )
9490, 93mpdan 421 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k )  =  ( ( 1  / 
2 ) ^ k
) )
9594adantl 277 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  =  ( ( 1  /  2 ) ^ k ) )
96 simpr 110 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e. 
NN0 )  ->  k  e.  NN0 )
97 reexpcl 10627 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  / 
2 ) ^ k
)  e.  RR )
9887, 96, 97sylancr 414 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 1  /  2
) ^ k )  e.  RR )
9998recnd 8048 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 1  /  2
) ^ k )  e.  CC )
10095, 99eqeltrd 2270 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  e.  CC )
101 1lt2 9151 . . . . . . . . . . . . . 14  |-  1  <  2
102 2re 9052 . . . . . . . . . . . . . . 15  |-  2  e.  RR
103 0le2 9072 . . . . . . . . . . . . . . 15  |-  0  <_  2
104 absid 11215 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  RR  /\  0  <_  2 )  -> 
( abs `  2
)  =  2 )
105102, 103, 104mp2an 426 . . . . . . . . . . . . . 14  |-  ( abs `  2 )  =  2
106101, 105breqtrri 4056 . . . . . . . . . . . . 13  |-  1  <  ( abs `  2
)
107106a1i 9 . . . . . . . . . . . 12  |-  ( T. 
->  1  <  ( abs `  2 ) )
10886, 107, 95georeclim 11656 . . . . . . . . . . 11  |-  ( T. 
->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( 2  /  (
2  -  1 ) ) )
109 2m1e1 9100 . . . . . . . . . . . . 13  |-  ( 2  -  1 )  =  1
110109oveq2i 5929 . . . . . . . . . . . 12  |-  ( 2  /  ( 2  -  1 ) )  =  ( 2  /  1
)
111 2cn 9053 . . . . . . . . . . . . 13  |-  2  e.  CC
112111div1i 8759 . . . . . . . . . . . 12  |-  ( 2  /  1 )  =  2
113110, 112eqtri 2214 . . . . . . . . . . 11  |-  ( 2  /  ( 2  -  1 ) )  =  2
114108, 113breqtrdi 4070 . . . . . . . . . 10  |-  ( T. 
->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  2 )
1152, 77, 100, 114clim2ser 11480 . . . . . . . . 9  |-  ( T. 
->  seq ( 0  +  1 ) (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( 2  -  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) ) ` 
0 ) ) )
116 seqeq1 10521 . . . . . . . . . 10  |-  ( ( 0  +  1 )  =  1  ->  seq ( 0  +  1 ) (  +  , 
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) )  =  seq 1 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) ) )
11780, 116ax-mp 5 . . . . . . . . 9  |-  seq (
0  +  1 ) (  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) )  =  seq 1
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) )
1186adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  k  e.  ( ZZ>= `  0 )
)  ->  k  e.  NN0 )
11994, 90eqeltrd 2270 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k )  e.  RR )
120118, 119syl 14 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( (
n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k )  e.  RR )
12120, 120, 18seq3-1 10533 . . . . . . . . . . . . 13  |-  ( T. 
->  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 )  =  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 0 ) )
122 halfcn 9196 . . . . . . . . . . . . . . . . 17  |-  ( 1  /  2 )  e.  CC
123 exp0 10614 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  /  2 )  e.  CC  ->  (
( 1  /  2
) ^ 0 )  =  1 )
124122, 123ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( 1  /  2 ) ^ 0 )  =  1
125124, 35eqeltri 2266 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  2 ) ^ 0 )  e. 
NN0
126 oveq2 5926 . . . . . . . . . . . . . . . 16  |-  ( n  =  0  ->  (
( 1  /  2
) ^ n )  =  ( ( 1  /  2 ) ^
0 ) )
127126, 92fvmptg 5633 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  NN0  /\  ( ( 1  / 
2 ) ^ 0 )  e.  NN0 )  ->  ( ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) ` 
0 )  =  ( ( 1  /  2
) ^ 0 ) )
1281, 125, 127mp2an 426 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 0 )  =  ( ( 1  / 
2 ) ^ 0 )
129128, 124eqtri 2214 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 0 )  =  1
130121, 129eqtrdi 2242 . . . . . . . . . . . 12  |-  ( T. 
->  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 )  =  1 )
131130mptru 1373 . . . . . . . . . . 11  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) ) ` 
0 )  =  1
132131oveq2i 5929 . . . . . . . . . 10  |-  ( 2  -  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 ) )  =  ( 2  -  1 )
133132, 109eqtri 2214 . . . . . . . . 9  |-  ( 2  -  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 ) )  =  1
134115, 117, 1333brtr3g 4062 . . . . . . . 8  |-  ( T. 
->  seq 1 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  1 )
135 nnnn0 9247 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  NN0 )
136135, 100sylan2 286 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  e.  CC )
137102a1i 9 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  2  e.  RR )
138135, 90syl 14 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( 1  /  2
) ^ k )  e.  RR )
139137, 138remulcld 8050 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  e.  RR )
14091oveq2d 5934 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
2  x.  ( ( 1  /  2 ) ^ n ) )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
141 erelem1.1 . . . . . . . . . . . 12  |-  F  =  ( n  e.  NN  |->  ( 2  x.  (
( 1  /  2
) ^ n ) ) )
142140, 141fvmptg 5633 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  ( 2  x.  (
( 1  /  2
) ^ k ) )  e.  RR )  ->  ( F `  k )  =  ( 2  x.  ( ( 1  /  2 ) ^ k ) ) )
143139, 142mpdan 421 . . . . . . . . . 10  |-  ( k  e.  NN  ->  ( F `  k )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
144143adantl 277 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
145135, 95sylan2 286 . . . . . . . . . 10  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  =  ( ( 1  /  2 ) ^ k ) )
146145oveq2d 5934 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  (
2  x.  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k ) )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
147144, 146eqtr4d 2229 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  =  ( 2  x.  ( ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) `  k ) ) )
14875, 76, 86, 134, 136, 147isermulc2 11483 . . . . . . 7  |-  ( T. 
->  seq 1 (  +  ,  F )  ~~>  ( 2  x.  1 ) )
149 2t1e2 9135 . . . . . . 7  |-  ( 2  x.  1 )  =  2
150148, 149breqtrdi 4070 . . . . . 6  |-  ( T. 
->  seq 1 (  +  ,  F )  ~~>  2 )
151135, 63sylan2 286 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
152 remulcl 8000 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( ( 1  / 
2 ) ^ k
)  e.  RR )  ->  ( 2  x.  ( ( 1  / 
2 ) ^ k
) )  e.  RR )
153102, 98, 152sylancr 414 . . . . . . . 8  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  e.  RR )
154135, 153sylan2 286 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  e.  RR )
155144, 154eqeltrd 2270 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
156 faclbnd2 10813 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 2 ^ k )  /  2 )  <_ 
( ! `  k
) )
157156adantl 277 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 2 ^ k
)  /  2 )  <_  ( ! `  k ) )
158 2nn 9143 . . . . . . . . . . . . . 14  |-  2  e.  NN
159 nnexpcl 10623 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
160158, 96, 159sylancr 414 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k )  e.  NN )
161160nnrpd 9760 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k )  e.  RR+ )
162161rphalfcld 9775 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 2 ^ k
)  /  2 )  e.  RR+ )
16361nnrpd 9760 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( ! `  k )  e.  RR+ )
164162, 163lerecd 9782 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( ( 2 ^ k )  /  2
)  <_  ( ! `  k )  <->  ( 1  /  ( ! `  k ) )  <_ 
( 1  /  (
( 2 ^ k
)  /  2 ) ) ) )
165157, 164mpbid 147 . . . . . . . . 9  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ! `
 k ) )  <_  ( 1  / 
( ( 2 ^ k )  /  2
) ) )
166 2cnd 9055 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  2  e.  CC )
167160nncnd 8996 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k )  e.  CC )
168160nnap0d 9028 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k ) #  0 )
169166, 167, 168divrecapd 8812 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  /  ( 2 ^ k ) )  =  ( 2  x.  ( 1  /  (
2 ^ k ) ) ) )
170 2ap0 9075 . . . . . . . . . . . 12  |-  2 #  0
171170a1i 9 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  2 #  0 )
172167, 166, 168, 171recdivapd 8826 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ( 2 ^ k )  /  2 ) )  =  ( 2  / 
( 2 ^ k
) ) )
173 nn0z 9337 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  ZZ )
174173adantl 277 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e. 
NN0 )  ->  k  e.  ZZ )
175166, 171, 174exprecapd 10752 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 1  /  2
) ^ k )  =  ( 1  / 
( 2 ^ k
) ) )
176175oveq2d 5934 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  =  ( 2  x.  ( 1  /  (
2 ^ k ) ) ) )
177169, 172, 1763eqtr4rd 2237 . . . . . . . . 9  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  =  ( 1  / 
( ( 2 ^ k )  /  2
) ) )
178165, 177breqtrrd 4057 . . . . . . . 8  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ! `
 k ) )  <_  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
179135, 178sylan2 286 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( ! `
 k ) )  <_  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
180135, 60sylan2 286 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  =  ( 1  / 
( ! `  k
) ) )
181179, 180, 1443brtr4d 4061 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  <_  ( F `  k
) )
18275, 76, 85, 150, 151, 155, 181iserle 11485 . . . . 5  |-  ( T. 
->  ( _e  -  1 )  <_  2 )
183182mptru 1373 . . . 4  |-  ( _e 
-  1 )  <_ 
2
184 ere 11813 . . . . 5  |-  _e  e.  RR
185184, 66, 102lesubaddi 8525 . . . 4  |-  ( ( _e  -  1 )  <_  2  <->  _e  <_  ( 2  +  1 ) )
186183, 185mpbi 145 . . 3  |-  _e  <_  ( 2  +  1 )
187 df-3 9042 . . 3  |-  3  =  ( 2  +  1 )
188186, 187breqtrri 4056 . 2  |-  _e  <_  3
18974, 188pm3.2i 272 1  |-  ( 2  <_  _e  /\  _e  <_  3 )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   T. wtru 1365    e. wcel 2164   class class class wbr 4029    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190   # cap 8600    / cdiv 8691   NNcn 8982   2c2 9033   3c3 9034   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592    seqcseq 10518   ^cexp 10609   !cfa 10796   abscabs 11141    ~~> cli 11421   expce 11785   _eceu 11786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791  df-e 11792
This theorem is referenced by:  egt2lt3  11923
  Copyright terms: Public domain W3C validator