| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elinti | GIF version | ||
| Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| elinti | ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintg 3930 | . . 3 ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) | |
| 2 | eleq2 2293 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐶)) | |
| 3 | 2 | rspccv 2904 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
| 4 | 1, 3 | biimtrdi 163 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐴 ∈ ∩ 𝐵 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶))) |
| 5 | 4 | pm2.43i 49 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∀wral 2508 ∩ cint 3922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-int 3923 |
| This theorem is referenced by: subgintm 13730 subrngintm 14170 subrgintm 14201 lssintclm 14342 |
| Copyright terms: Public domain | W3C validator |