ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgintm Unicode version

Theorem subrgintm 14005
Description: The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subrgintm  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubRing `  R ) )
Distinct variable groups:    w, R    w, S

Proof of Theorem subrgintm
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 13989 . . . . 5  |-  ( r  e.  (SubRing `  R
)  ->  r  e.  (SubGrp `  R ) )
21ssriv 3197 . . . 4  |-  (SubRing `  R
)  C_  (SubGrp `  R
)
3 sstr 3201 . . . 4  |-  ( ( S  C_  (SubRing `  R
)  /\  (SubRing `  R
)  C_  (SubGrp `  R
) )  ->  S  C_  (SubGrp `  R )
)
42, 3mpan2 425 . . 3  |-  ( S 
C_  (SubRing `  R )  ->  S  C_  (SubGrp `  R
) )
5 subgintm 13534 . . 3  |-  ( ( S  C_  (SubGrp `  R
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
64, 5sylan 283 . 2  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
7 ssel2 3188 . . . . . 6  |-  ( ( S  C_  (SubRing `  R
)  /\  r  e.  S )  ->  r  e.  (SubRing `  R )
)
87adantlr 477 . . . . 5  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  r  e.  S )  ->  r  e.  (SubRing `  R )
)
9 eqid 2205 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
109subrg1cl 13991 . . . . 5  |-  ( r  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  r )
118, 10syl 14 . . . 4  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  r  e.  S )  ->  ( 1r `  R )  e.  r )
1211ralrimiva 2579 . . 3  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  A. r  e.  S  ( 1r `  R )  e.  r )
13 ssel 3187 . . . . . . 7  |-  ( S 
C_  (SubRing `  R )  ->  ( w  e.  S  ->  w  e.  (SubRing `  R
) ) )
14 subrgrcl 13988 . . . . . . 7  |-  ( w  e.  (SubRing `  R
)  ->  R  e.  Ring )
1513, 14syl6 33 . . . . . 6  |-  ( S 
C_  (SubRing `  R )  ->  ( w  e.  S  ->  R  e.  Ring )
)
1615exlimdv 1842 . . . . 5  |-  ( S 
C_  (SubRing `  R )  ->  ( E. w  w  e.  S  ->  R  e.  Ring ) )
1716imp 124 . . . 4  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  R  e.  Ring )
18 ringsrg 13809 . . . 4  |-  ( R  e.  Ring  ->  R  e. SRing
)
19 eqid 2205 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2019, 9srgidcl 13738 . . . . 5  |-  ( R  e. SRing  ->  ( 1r `  R )  e.  (
Base `  R )
)
21 elintg 3893 . . . . 5  |-  ( ( 1r `  R )  e.  ( Base `  R
)  ->  ( ( 1r `  R )  e. 
|^| S  <->  A. r  e.  S  ( 1r `  R )  e.  r ) )
2220, 21syl 14 . . . 4  |-  ( R  e. SRing  ->  ( ( 1r
`  R )  e. 
|^| S  <->  A. r  e.  S  ( 1r `  R )  e.  r ) )
2317, 18, 223syl 17 . . 3  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  ( ( 1r `  R )  e.  |^| S 
<-> 
A. r  e.  S  ( 1r `  R )  e.  r ) )
2412, 23mpbird 167 . 2  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  ( 1r `  R
)  e.  |^| S
)
258adantlr 477 . . . . . 6  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  r  e.  (SubRing `  R ) )
26 simprl 529 . . . . . . 7  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  x  e.  |^| S )
27 elinti 3894 . . . . . . . 8  |-  ( x  e.  |^| S  ->  (
r  e.  S  ->  x  e.  r )
)
2827imp 124 . . . . . . 7  |-  ( ( x  e.  |^| S  /\  r  e.  S
)  ->  x  e.  r )
2926, 28sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  x  e.  r )
30 simprr 531 . . . . . . 7  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  y  e.  |^| S )
31 elinti 3894 . . . . . . . 8  |-  ( y  e.  |^| S  ->  (
r  e.  S  -> 
y  e.  r ) )
3231imp 124 . . . . . . 7  |-  ( ( y  e.  |^| S  /\  r  e.  S
)  ->  y  e.  r )
3330, 32sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  y  e.  r )
34 eqid 2205 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
3534subrgmcl 13995 . . . . . 6  |-  ( ( r  e.  (SubRing `  R
)  /\  x  e.  r  /\  y  e.  r )  ->  ( x
( .r `  R
) y )  e.  r )
3625, 29, 33, 35syl3anc 1250 . . . . 5  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  ( x
( .r `  R
) y )  e.  r )
3736ralrimiva 2579 . . . 4  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  A. r  e.  S  ( x ( .r
`  R ) y )  e.  r )
38 simplr 528 . . . . . 6  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  E. w  w  e.  S )
39 eleq1w 2266 . . . . . . . 8  |-  ( r  =  w  ->  (
r  e.  S  <->  w  e.  S ) )
4039cbvexv 1942 . . . . . . 7  |-  ( E. r  r  e.  S  <->  E. w  w  e.  S
)
4136elexd 2785 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  ( x
( .r `  R
) y )  e. 
_V )
4241ex 115 . . . . . . . 8  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( r  e.  S  ->  ( x
( .r `  R
) y )  e. 
_V ) )
4342exlimdv 1842 . . . . . . 7  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( E. r 
r  e.  S  -> 
( x ( .r
`  R ) y )  e.  _V )
)
4440, 43biimtrrid 153 . . . . . 6  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( E. w  w  e.  S  ->  ( x ( .r `  R ) y )  e.  _V ) )
4538, 44mpd 13 . . . . 5  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( x ( .r `  R ) y )  e.  _V )
46 elintg 3893 . . . . 5  |-  ( ( x ( .r `  R ) y )  e.  _V  ->  (
( x ( .r
`  R ) y )  e.  |^| S  <->  A. r  e.  S  ( x ( .r `  R ) y )  e.  r ) )
4745, 46syl 14 . . . 4  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( ( x ( .r `  R
) y )  e. 
|^| S  <->  A. r  e.  S  ( x
( .r `  R
) y )  e.  r ) )
4837, 47mpbird 167 . . 3  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( x ( .r `  R ) y )  e.  |^| S )
4948ralrimivva 2588 . 2  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S )
5019, 9, 34issubrg2 14003 . . 3  |-  ( R  e.  Ring  ->  ( |^| S  e.  (SubRing `  R
)  <->  ( |^| S  e.  (SubGrp `  R )  /\  ( 1r `  R
)  e.  |^| S  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
5117, 50syl 14 . 2  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  ( |^| S  e.  (SubRing `  R )  <->  (
|^| S  e.  (SubGrp `  R )  /\  ( 1r `  R )  e. 
|^| S  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
526, 24, 49, 51mpbir3and 1183 1  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubRing `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981   E.wex 1515    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166   |^|cint 3885   ` cfv 5271  (class class class)co 5944   Basecbs 12832   .rcmulr 12910  SubGrpcsubg 13503   1rcur 13721  SRingcsrg 13725   Ringcrg 13758  SubRingcsubrg 13979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-subg 13506  df-cmn 13622  df-abl 13623  df-mgp 13683  df-ur 13722  df-srg 13726  df-ring 13760  df-subrg 13981
This theorem is referenced by:  subrgin  14006
  Copyright terms: Public domain W3C validator