ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgintm Unicode version

Theorem subrgintm 14207
Description: The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subrgintm  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubRing `  R ) )
Distinct variable groups:    w, R    w, S

Proof of Theorem subrgintm
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 14191 . . . . 5  |-  ( r  e.  (SubRing `  R
)  ->  r  e.  (SubGrp `  R ) )
21ssriv 3228 . . . 4  |-  (SubRing `  R
)  C_  (SubGrp `  R
)
3 sstr 3232 . . . 4  |-  ( ( S  C_  (SubRing `  R
)  /\  (SubRing `  R
)  C_  (SubGrp `  R
) )  ->  S  C_  (SubGrp `  R )
)
42, 3mpan2 425 . . 3  |-  ( S 
C_  (SubRing `  R )  ->  S  C_  (SubGrp `  R
) )
5 subgintm 13735 . . 3  |-  ( ( S  C_  (SubGrp `  R
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
64, 5sylan 283 . 2  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
7 ssel2 3219 . . . . . 6  |-  ( ( S  C_  (SubRing `  R
)  /\  r  e.  S )  ->  r  e.  (SubRing `  R )
)
87adantlr 477 . . . . 5  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  r  e.  S )  ->  r  e.  (SubRing `  R )
)
9 eqid 2229 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
109subrg1cl 14193 . . . . 5  |-  ( r  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  r )
118, 10syl 14 . . . 4  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  r  e.  S )  ->  ( 1r `  R )  e.  r )
1211ralrimiva 2603 . . 3  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  A. r  e.  S  ( 1r `  R )  e.  r )
13 ssel 3218 . . . . . . 7  |-  ( S 
C_  (SubRing `  R )  ->  ( w  e.  S  ->  w  e.  (SubRing `  R
) ) )
14 subrgrcl 14190 . . . . . . 7  |-  ( w  e.  (SubRing `  R
)  ->  R  e.  Ring )
1513, 14syl6 33 . . . . . 6  |-  ( S 
C_  (SubRing `  R )  ->  ( w  e.  S  ->  R  e.  Ring )
)
1615exlimdv 1865 . . . . 5  |-  ( S 
C_  (SubRing `  R )  ->  ( E. w  w  e.  S  ->  R  e.  Ring ) )
1716imp 124 . . . 4  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  R  e.  Ring )
18 ringsrg 14010 . . . 4  |-  ( R  e.  Ring  ->  R  e. SRing
)
19 eqid 2229 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2019, 9srgidcl 13939 . . . . 5  |-  ( R  e. SRing  ->  ( 1r `  R )  e.  (
Base `  R )
)
21 elintg 3931 . . . . 5  |-  ( ( 1r `  R )  e.  ( Base `  R
)  ->  ( ( 1r `  R )  e. 
|^| S  <->  A. r  e.  S  ( 1r `  R )  e.  r ) )
2220, 21syl 14 . . . 4  |-  ( R  e. SRing  ->  ( ( 1r
`  R )  e. 
|^| S  <->  A. r  e.  S  ( 1r `  R )  e.  r ) )
2317, 18, 223syl 17 . . 3  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  ( ( 1r `  R )  e.  |^| S 
<-> 
A. r  e.  S  ( 1r `  R )  e.  r ) )
2412, 23mpbird 167 . 2  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  ( 1r `  R
)  e.  |^| S
)
258adantlr 477 . . . . . 6  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  r  e.  (SubRing `  R ) )
26 simprl 529 . . . . . . 7  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  x  e.  |^| S )
27 elinti 3932 . . . . . . . 8  |-  ( x  e.  |^| S  ->  (
r  e.  S  ->  x  e.  r )
)
2827imp 124 . . . . . . 7  |-  ( ( x  e.  |^| S  /\  r  e.  S
)  ->  x  e.  r )
2926, 28sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  x  e.  r )
30 simprr 531 . . . . . . 7  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  y  e.  |^| S )
31 elinti 3932 . . . . . . . 8  |-  ( y  e.  |^| S  ->  (
r  e.  S  -> 
y  e.  r ) )
3231imp 124 . . . . . . 7  |-  ( ( y  e.  |^| S  /\  r  e.  S
)  ->  y  e.  r )
3330, 32sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  y  e.  r )
34 eqid 2229 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
3534subrgmcl 14197 . . . . . 6  |-  ( ( r  e.  (SubRing `  R
)  /\  x  e.  r  /\  y  e.  r )  ->  ( x
( .r `  R
) y )  e.  r )
3625, 29, 33, 35syl3anc 1271 . . . . 5  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  ( x
( .r `  R
) y )  e.  r )
3736ralrimiva 2603 . . . 4  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  A. r  e.  S  ( x ( .r
`  R ) y )  e.  r )
38 simplr 528 . . . . . 6  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  E. w  w  e.  S )
39 eleq1w 2290 . . . . . . . 8  |-  ( r  =  w  ->  (
r  e.  S  <->  w  e.  S ) )
4039cbvexv 1965 . . . . . . 7  |-  ( E. r  r  e.  S  <->  E. w  w  e.  S
)
4136elexd 2813 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  ( x
( .r `  R
) y )  e. 
_V )
4241ex 115 . . . . . . . 8  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( r  e.  S  ->  ( x
( .r `  R
) y )  e. 
_V ) )
4342exlimdv 1865 . . . . . . 7  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( E. r 
r  e.  S  -> 
( x ( .r
`  R ) y )  e.  _V )
)
4440, 43biimtrrid 153 . . . . . 6  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( E. w  w  e.  S  ->  ( x ( .r `  R ) y )  e.  _V ) )
4538, 44mpd 13 . . . . 5  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( x ( .r `  R ) y )  e.  _V )
46 elintg 3931 . . . . 5  |-  ( ( x ( .r `  R ) y )  e.  _V  ->  (
( x ( .r
`  R ) y )  e.  |^| S  <->  A. r  e.  S  ( x ( .r `  R ) y )  e.  r ) )
4745, 46syl 14 . . . 4  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( ( x ( .r `  R
) y )  e. 
|^| S  <->  A. r  e.  S  ( x
( .r `  R
) y )  e.  r ) )
4837, 47mpbird 167 . . 3  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( x ( .r `  R ) y )  e.  |^| S )
4948ralrimivva 2612 . 2  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S )
5019, 9, 34issubrg2 14205 . . 3  |-  ( R  e.  Ring  ->  ( |^| S  e.  (SubRing `  R
)  <->  ( |^| S  e.  (SubGrp `  R )  /\  ( 1r `  R
)  e.  |^| S  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
5117, 50syl 14 . 2  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  ( |^| S  e.  (SubRing `  R )  <->  (
|^| S  e.  (SubGrp `  R )  /\  ( 1r `  R )  e. 
|^| S  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
526, 24, 49, 51mpbir3and 1204 1  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubRing `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002   E.wex 1538    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   |^|cint 3923   ` cfv 5318  (class class class)co 6001   Basecbs 13032   .rcmulr 13111  SubGrpcsubg 13704   1rcur 13922  SRingcsrg 13926   Ringcrg 13959  SubRingcsubrg 14181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-subg 13707  df-cmn 13823  df-abl 13824  df-mgp 13884  df-ur 13923  df-srg 13927  df-ring 13961  df-subrg 14183
This theorem is referenced by:  subrgin  14208
  Copyright terms: Public domain W3C validator