ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgintm Unicode version

Theorem subrgintm 14120
Description: The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subrgintm  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubRing `  R ) )
Distinct variable groups:    w, R    w, S

Proof of Theorem subrgintm
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 14104 . . . . 5  |-  ( r  e.  (SubRing `  R
)  ->  r  e.  (SubGrp `  R ) )
21ssriv 3205 . . . 4  |-  (SubRing `  R
)  C_  (SubGrp `  R
)
3 sstr 3209 . . . 4  |-  ( ( S  C_  (SubRing `  R
)  /\  (SubRing `  R
)  C_  (SubGrp `  R
) )  ->  S  C_  (SubGrp `  R )
)
42, 3mpan2 425 . . 3  |-  ( S 
C_  (SubRing `  R )  ->  S  C_  (SubGrp `  R
) )
5 subgintm 13649 . . 3  |-  ( ( S  C_  (SubGrp `  R
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
64, 5sylan 283 . 2  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
7 ssel2 3196 . . . . . 6  |-  ( ( S  C_  (SubRing `  R
)  /\  r  e.  S )  ->  r  e.  (SubRing `  R )
)
87adantlr 477 . . . . 5  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  r  e.  S )  ->  r  e.  (SubRing `  R )
)
9 eqid 2207 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
109subrg1cl 14106 . . . . 5  |-  ( r  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  r )
118, 10syl 14 . . . 4  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  r  e.  S )  ->  ( 1r `  R )  e.  r )
1211ralrimiva 2581 . . 3  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  A. r  e.  S  ( 1r `  R )  e.  r )
13 ssel 3195 . . . . . . 7  |-  ( S 
C_  (SubRing `  R )  ->  ( w  e.  S  ->  w  e.  (SubRing `  R
) ) )
14 subrgrcl 14103 . . . . . . 7  |-  ( w  e.  (SubRing `  R
)  ->  R  e.  Ring )
1513, 14syl6 33 . . . . . 6  |-  ( S 
C_  (SubRing `  R )  ->  ( w  e.  S  ->  R  e.  Ring )
)
1615exlimdv 1843 . . . . 5  |-  ( S 
C_  (SubRing `  R )  ->  ( E. w  w  e.  S  ->  R  e.  Ring ) )
1716imp 124 . . . 4  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  R  e.  Ring )
18 ringsrg 13924 . . . 4  |-  ( R  e.  Ring  ->  R  e. SRing
)
19 eqid 2207 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2019, 9srgidcl 13853 . . . . 5  |-  ( R  e. SRing  ->  ( 1r `  R )  e.  (
Base `  R )
)
21 elintg 3907 . . . . 5  |-  ( ( 1r `  R )  e.  ( Base `  R
)  ->  ( ( 1r `  R )  e. 
|^| S  <->  A. r  e.  S  ( 1r `  R )  e.  r ) )
2220, 21syl 14 . . . 4  |-  ( R  e. SRing  ->  ( ( 1r
`  R )  e. 
|^| S  <->  A. r  e.  S  ( 1r `  R )  e.  r ) )
2317, 18, 223syl 17 . . 3  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  ( ( 1r `  R )  e.  |^| S 
<-> 
A. r  e.  S  ( 1r `  R )  e.  r ) )
2412, 23mpbird 167 . 2  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  ( 1r `  R
)  e.  |^| S
)
258adantlr 477 . . . . . 6  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  r  e.  (SubRing `  R ) )
26 simprl 529 . . . . . . 7  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  x  e.  |^| S )
27 elinti 3908 . . . . . . . 8  |-  ( x  e.  |^| S  ->  (
r  e.  S  ->  x  e.  r )
)
2827imp 124 . . . . . . 7  |-  ( ( x  e.  |^| S  /\  r  e.  S
)  ->  x  e.  r )
2926, 28sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  x  e.  r )
30 simprr 531 . . . . . . 7  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  y  e.  |^| S )
31 elinti 3908 . . . . . . . 8  |-  ( y  e.  |^| S  ->  (
r  e.  S  -> 
y  e.  r ) )
3231imp 124 . . . . . . 7  |-  ( ( y  e.  |^| S  /\  r  e.  S
)  ->  y  e.  r )
3330, 32sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  y  e.  r )
34 eqid 2207 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
3534subrgmcl 14110 . . . . . 6  |-  ( ( r  e.  (SubRing `  R
)  /\  x  e.  r  /\  y  e.  r )  ->  ( x
( .r `  R
) y )  e.  r )
3625, 29, 33, 35syl3anc 1250 . . . . 5  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  ( x
( .r `  R
) y )  e.  r )
3736ralrimiva 2581 . . . 4  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  A. r  e.  S  ( x ( .r
`  R ) y )  e.  r )
38 simplr 528 . . . . . 6  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  E. w  w  e.  S )
39 eleq1w 2268 . . . . . . . 8  |-  ( r  =  w  ->  (
r  e.  S  <->  w  e.  S ) )
4039cbvexv 1943 . . . . . . 7  |-  ( E. r  r  e.  S  <->  E. w  w  e.  S
)
4136elexd 2790 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  ( x
( .r `  R
) y )  e. 
_V )
4241ex 115 . . . . . . . 8  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( r  e.  S  ->  ( x
( .r `  R
) y )  e. 
_V ) )
4342exlimdv 1843 . . . . . . 7  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( E. r 
r  e.  S  -> 
( x ( .r
`  R ) y )  e.  _V )
)
4440, 43biimtrrid 153 . . . . . 6  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( E. w  w  e.  S  ->  ( x ( .r `  R ) y )  e.  _V ) )
4538, 44mpd 13 . . . . 5  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( x ( .r `  R ) y )  e.  _V )
46 elintg 3907 . . . . 5  |-  ( ( x ( .r `  R ) y )  e.  _V  ->  (
( x ( .r
`  R ) y )  e.  |^| S  <->  A. r  e.  S  ( x ( .r `  R ) y )  e.  r ) )
4745, 46syl 14 . . . 4  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( ( x ( .r `  R
) y )  e. 
|^| S  <->  A. r  e.  S  ( x
( .r `  R
) y )  e.  r ) )
4837, 47mpbird 167 . . 3  |-  ( ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( x ( .r `  R ) y )  e.  |^| S )
4948ralrimivva 2590 . 2  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S )
5019, 9, 34issubrg2 14118 . . 3  |-  ( R  e.  Ring  ->  ( |^| S  e.  (SubRing `  R
)  <->  ( |^| S  e.  (SubGrp `  R )  /\  ( 1r `  R
)  e.  |^| S  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
5117, 50syl 14 . 2  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  ( |^| S  e.  (SubRing `  R )  <->  (
|^| S  e.  (SubGrp `  R )  /\  ( 1r `  R )  e. 
|^| S  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
526, 24, 49, 51mpbir3and 1183 1  |-  ( ( S  C_  (SubRing `  R
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubRing `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981   E.wex 1516    e. wcel 2178   A.wral 2486   _Vcvv 2776    C_ wss 3174   |^|cint 3899   ` cfv 5290  (class class class)co 5967   Basecbs 12947   .rcmulr 13025  SubGrpcsubg 13618   1rcur 13836  SRingcsrg 13840   Ringcrg 13873  SubRingcsubrg 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-subg 13621  df-cmn 13737  df-abl 13738  df-mgp 13798  df-ur 13837  df-srg 13841  df-ring 13875  df-subrg 14096
This theorem is referenced by:  subrgin  14121
  Copyright terms: Public domain W3C validator