ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgintm Unicode version

Theorem subgintm 13735
Description: The intersection of an inhabited collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subgintm  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubGrp `  G ) )
Distinct variable groups:    w, G    w, S

Proof of Theorem subgintm
Dummy variables  x  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssunim 3945 . . . 4  |-  ( E. w  w  e.  S  ->  |^| S  C_  U. S
)
21adantl 277 . . 3  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  |^| S  C_  U. S
)
3 ssel2 3219 . . . . . . 7  |-  ( ( S  C_  (SubGrp `  G
)  /\  g  e.  S )  ->  g  e.  (SubGrp `  G )
)
43adantlr 477 . . . . . 6  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  g  e.  S )  ->  g  e.  (SubGrp `  G )
)
5 eqid 2229 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
65subgss 13711 . . . . . 6  |-  ( g  e.  (SubGrp `  G
)  ->  g  C_  ( Base `  G )
)
74, 6syl 14 . . . . 5  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  g  e.  S )  ->  g  C_  ( Base `  G
) )
87ralrimiva 2603 . . . 4  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  A. g  e.  S  g  C_  ( Base `  G
) )
9 unissb 3918 . . . 4  |-  ( U. S  C_  ( Base `  G
)  <->  A. g  e.  S  g  C_  ( Base `  G
) )
108, 9sylibr 134 . . 3  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  U. S  C_  ( Base `  G ) )
112, 10sstrd 3234 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  |^| S  C_  ( Base `  G ) )
12 eqid 2229 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
1312subg0cl 13719 . . . . . 6  |-  ( g  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  g )
144, 13syl 14 . . . . 5  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  g  e.  S )  ->  ( 0g `  G )  e.  g )
1514ralrimiva 2603 . . . 4  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  A. g  e.  S  ( 0g `  G )  e.  g )
16 ssel 3218 . . . . . . . 8  |-  ( S 
C_  (SubGrp `  G )  ->  ( w  e.  S  ->  w  e.  (SubGrp `  G ) ) )
1716eximdv 1926 . . . . . . 7  |-  ( S 
C_  (SubGrp `  G )  ->  ( E. w  w  e.  S  ->  E. w  w  e.  (SubGrp `  G
) ) )
1817imp 124 . . . . . 6  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  E. w  w  e.  (SubGrp `  G )
)
19 subgrcl 13716 . . . . . . 7  |-  ( w  e.  (SubGrp `  G
)  ->  G  e.  Grp )
2019exlimiv 1644 . . . . . 6  |-  ( E. w  w  e.  (SubGrp `  G )  ->  G  e.  Grp )
2118, 20syl 14 . . . . 5  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  G  e.  Grp )
225, 12grpidcl 13562 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
23 elintg 3931 . . . . 5  |-  ( ( 0g `  G )  e.  ( Base `  G
)  ->  ( ( 0g `  G )  e. 
|^| S  <->  A. g  e.  S  ( 0g `  G )  e.  g ) )
2421, 22, 233syl 17 . . . 4  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  ( ( 0g `  G )  e.  |^| S 
<-> 
A. g  e.  S  ( 0g `  G )  e.  g ) )
2515, 24mpbird 167 . . 3  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  ( 0g `  G
)  e.  |^| S
)
26 elex2 2816 . . 3  |-  ( ( 0g `  G )  e.  |^| S  ->  E. w  w  e.  |^| S )
2725, 26syl 14 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  E. w  w  e. 
|^| S )
284adantlr 477 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  g  e.  S
)  ->  g  e.  (SubGrp `  G ) )
29 simprl 529 . . . . . . . . . 10  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  x  e.  |^| S )
30 elinti 3932 . . . . . . . . . . 11  |-  ( x  e.  |^| S  ->  (
g  e.  S  ->  x  e.  g )
)
3130imp 124 . . . . . . . . . 10  |-  ( ( x  e.  |^| S  /\  g  e.  S
)  ->  x  e.  g )
3229, 31sylan 283 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  g  e.  S
)  ->  x  e.  g )
33 simprr 531 . . . . . . . . . 10  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  y  e.  |^| S )
34 elinti 3932 . . . . . . . . . . 11  |-  ( y  e.  |^| S  ->  (
g  e.  S  -> 
y  e.  g ) )
3534imp 124 . . . . . . . . . 10  |-  ( ( y  e.  |^| S  /\  g  e.  S
)  ->  y  e.  g )
3633, 35sylan 283 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  g  e.  S
)  ->  y  e.  g )
37 eqid 2229 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
3837subgcl 13721 . . . . . . . . 9  |-  ( ( g  e.  (SubGrp `  G )  /\  x  e.  g  /\  y  e.  g )  ->  (
x ( +g  `  G
) y )  e.  g )
3928, 32, 36, 38syl3anc 1271 . . . . . . . 8  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  g  e.  S
)  ->  ( x
( +g  `  G ) y )  e.  g )
4039ralrimiva 2603 . . . . . . 7  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  A. g  e.  S  ( x ( +g  `  G ) y )  e.  g )
41 vex 2802 . . . . . . . . . . 11  |-  x  e. 
_V
4241a1i 9 . . . . . . . . . 10  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  x  e.  _V )
43 plusgslid 13145 . . . . . . . . . . . 12  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4443slotex 13059 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  ( +g  `  G )  e. 
_V )
4518, 20, 443syl 17 . . . . . . . . . 10  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  ( +g  `  G
)  e.  _V )
46 vex 2802 . . . . . . . . . . 11  |-  y  e. 
_V
4746a1i 9 . . . . . . . . . 10  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  y  e.  _V )
48 ovexg 6035 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  ( +g  `  G )  e.  _V  /\  y  e.  _V )  ->  (
x ( +g  `  G
) y )  e. 
_V )
4942, 45, 47, 48syl3anc 1271 . . . . . . . . 9  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  ( x ( +g  `  G ) y )  e.  _V )
50 elintg 3931 . . . . . . . . 9  |-  ( ( x ( +g  `  G
) y )  e. 
_V  ->  ( ( x ( +g  `  G
) y )  e. 
|^| S  <->  A. g  e.  S  ( x
( +g  `  G ) y )  e.  g ) )
5149, 50syl 14 . . . . . . . 8  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  ( ( x ( +g  `  G ) y )  e.  |^| S 
<-> 
A. g  e.  S  ( x ( +g  `  G ) y )  e.  g ) )
5251adantr 276 . . . . . . 7  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( ( x ( +g  `  G
) y )  e. 
|^| S  <->  A. g  e.  S  ( x
( +g  `  G ) y )  e.  g ) )
5340, 52mpbird 167 . . . . . 6  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( x ( +g  `  G ) y )  e.  |^| S )
5453anassrs 400 . . . . 5  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  /\  y  e.  |^| S )  -> 
( x ( +g  `  G ) y )  e.  |^| S )
5554ralrimiva 2603 . . . 4  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  A. y  e.  |^| S ( x ( +g  `  G
) y )  e. 
|^| S )
564adantlr 477 . . . . . . 7  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  /\  g  e.  S )  ->  g  e.  (SubGrp `  G )
)
5731adantll 476 . . . . . . 7  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  /\  g  e.  S )  ->  x  e.  g )
58 eqid 2229 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
5958subginvcl 13720 . . . . . . 7  |-  ( ( g  e.  (SubGrp `  G )  /\  x  e.  g )  ->  (
( invg `  G ) `  x
)  e.  g )
6056, 57, 59syl2anc 411 . . . . . 6  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  /\  g  e.  S )  ->  (
( invg `  G ) `  x
)  e.  g )
6160ralrimiva 2603 . . . . 5  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  A. g  e.  S  ( ( invg `  G ) `
 x )  e.  g )
6221adantr 276 . . . . . . 7  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  G  e.  Grp )
6311sselda 3224 . . . . . . 7  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  x  e.  ( Base `  G
) )
645, 58grpinvcl 13581 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  x
)  e.  ( Base `  G ) )
6562, 63, 64syl2anc 411 . . . . . 6  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  (
( invg `  G ) `  x
)  e.  ( Base `  G ) )
66 elintg 3931 . . . . . 6  |-  ( ( ( invg `  G ) `  x
)  e.  ( Base `  G )  ->  (
( ( invg `  G ) `  x
)  e.  |^| S  <->  A. g  e.  S  ( ( invg `  G ) `  x
)  e.  g ) )
6765, 66syl 14 . . . . 5  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  (
( ( invg `  G ) `  x
)  e.  |^| S  <->  A. g  e.  S  ( ( invg `  G ) `  x
)  e.  g ) )
6861, 67mpbird 167 . . . 4  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  (
( invg `  G ) `  x
)  e.  |^| S
)
6955, 68jca 306 . . 3  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  ( A. y  e.  |^| S
( x ( +g  `  G ) y )  e.  |^| S  /\  (
( invg `  G ) `  x
)  e.  |^| S
) )
7069ralrimiva 2603 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  A. x  e.  |^| S ( A. y  e.  |^| S ( x ( +g  `  G
) y )  e. 
|^| S  /\  (
( invg `  G ) `  x
)  e.  |^| S
) )
715, 37, 58issubg2m 13726 . . 3  |-  ( G  e.  Grp  ->  ( |^| S  e.  (SubGrp `  G )  <->  ( |^| S  C_  ( Base `  G
)  /\  E. w  w  e.  |^| S  /\  A. x  e.  |^| S
( A. y  e. 
|^| S ( x ( +g  `  G
) y )  e. 
|^| S  /\  (
( invg `  G ) `  x
)  e.  |^| S
) ) ) )
7218, 20, 713syl 17 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  ( |^| S  e.  (SubGrp `  G )  <->  (
|^| S  C_  ( Base `  G )  /\  E. w  w  e.  |^| S  /\  A. x  e. 
|^| S ( A. y  e.  |^| S ( x ( +g  `  G
) y )  e. 
|^| S  /\  (
( invg `  G ) `  x
)  e.  |^| S
) ) ) )
7311, 27, 70, 72mpbir3and 1204 1  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubGrp `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002   E.wex 1538    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   U.cuni 3888   |^|cint 3923   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   0gc0g 13289   Grpcgrp 13533   invgcminusg 13534  SubGrpcsubg 13704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-subg 13707
This theorem is referenced by:  subrngintm  14176  subrgintm  14207
  Copyright terms: Public domain W3C validator