ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgintm Unicode version

Theorem subgintm 13338
Description: The intersection of an inhabited collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subgintm  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubGrp `  G ) )
Distinct variable groups:    w, G    w, S

Proof of Theorem subgintm
Dummy variables  x  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssunim 3897 . . . 4  |-  ( E. w  w  e.  S  ->  |^| S  C_  U. S
)
21adantl 277 . . 3  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  |^| S  C_  U. S
)
3 ssel2 3179 . . . . . . 7  |-  ( ( S  C_  (SubGrp `  G
)  /\  g  e.  S )  ->  g  e.  (SubGrp `  G )
)
43adantlr 477 . . . . . 6  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  g  e.  S )  ->  g  e.  (SubGrp `  G )
)
5 eqid 2196 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
65subgss 13314 . . . . . 6  |-  ( g  e.  (SubGrp `  G
)  ->  g  C_  ( Base `  G )
)
74, 6syl 14 . . . . 5  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  g  e.  S )  ->  g  C_  ( Base `  G
) )
87ralrimiva 2570 . . . 4  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  A. g  e.  S  g  C_  ( Base `  G
) )
9 unissb 3870 . . . 4  |-  ( U. S  C_  ( Base `  G
)  <->  A. g  e.  S  g  C_  ( Base `  G
) )
108, 9sylibr 134 . . 3  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  U. S  C_  ( Base `  G ) )
112, 10sstrd 3194 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  |^| S  C_  ( Base `  G ) )
12 eqid 2196 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
1312subg0cl 13322 . . . . . 6  |-  ( g  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  g )
144, 13syl 14 . . . . 5  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  g  e.  S )  ->  ( 0g `  G )  e.  g )
1514ralrimiva 2570 . . . 4  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  A. g  e.  S  ( 0g `  G )  e.  g )
16 ssel 3178 . . . . . . . 8  |-  ( S 
C_  (SubGrp `  G )  ->  ( w  e.  S  ->  w  e.  (SubGrp `  G ) ) )
1716eximdv 1894 . . . . . . 7  |-  ( S 
C_  (SubGrp `  G )  ->  ( E. w  w  e.  S  ->  E. w  w  e.  (SubGrp `  G
) ) )
1817imp 124 . . . . . 6  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  E. w  w  e.  (SubGrp `  G )
)
19 subgrcl 13319 . . . . . . 7  |-  ( w  e.  (SubGrp `  G
)  ->  G  e.  Grp )
2019exlimiv 1612 . . . . . 6  |-  ( E. w  w  e.  (SubGrp `  G )  ->  G  e.  Grp )
2118, 20syl 14 . . . . 5  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  G  e.  Grp )
225, 12grpidcl 13171 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
23 elintg 3883 . . . . 5  |-  ( ( 0g `  G )  e.  ( Base `  G
)  ->  ( ( 0g `  G )  e. 
|^| S  <->  A. g  e.  S  ( 0g `  G )  e.  g ) )
2421, 22, 233syl 17 . . . 4  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  ( ( 0g `  G )  e.  |^| S 
<-> 
A. g  e.  S  ( 0g `  G )  e.  g ) )
2515, 24mpbird 167 . . 3  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  ( 0g `  G
)  e.  |^| S
)
26 elex2 2779 . . 3  |-  ( ( 0g `  G )  e.  |^| S  ->  E. w  w  e.  |^| S )
2725, 26syl 14 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  E. w  w  e. 
|^| S )
284adantlr 477 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  g  e.  S
)  ->  g  e.  (SubGrp `  G ) )
29 simprl 529 . . . . . . . . . 10  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  x  e.  |^| S )
30 elinti 3884 . . . . . . . . . . 11  |-  ( x  e.  |^| S  ->  (
g  e.  S  ->  x  e.  g )
)
3130imp 124 . . . . . . . . . 10  |-  ( ( x  e.  |^| S  /\  g  e.  S
)  ->  x  e.  g )
3229, 31sylan 283 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  g  e.  S
)  ->  x  e.  g )
33 simprr 531 . . . . . . . . . 10  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  y  e.  |^| S )
34 elinti 3884 . . . . . . . . . . 11  |-  ( y  e.  |^| S  ->  (
g  e.  S  -> 
y  e.  g ) )
3534imp 124 . . . . . . . . . 10  |-  ( ( y  e.  |^| S  /\  g  e.  S
)  ->  y  e.  g )
3633, 35sylan 283 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  g  e.  S
)  ->  y  e.  g )
37 eqid 2196 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
3837subgcl 13324 . . . . . . . . 9  |-  ( ( g  e.  (SubGrp `  G )  /\  x  e.  g  /\  y  e.  g )  ->  (
x ( +g  `  G
) y )  e.  g )
3928, 32, 36, 38syl3anc 1249 . . . . . . . 8  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  g  e.  S
)  ->  ( x
( +g  `  G ) y )  e.  g )
4039ralrimiva 2570 . . . . . . 7  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  A. g  e.  S  ( x ( +g  `  G ) y )  e.  g )
41 vex 2766 . . . . . . . . . . 11  |-  x  e. 
_V
4241a1i 9 . . . . . . . . . 10  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  x  e.  _V )
43 plusgslid 12800 . . . . . . . . . . . 12  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4443slotex 12715 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  ( +g  `  G )  e. 
_V )
4518, 20, 443syl 17 . . . . . . . . . 10  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  ( +g  `  G
)  e.  _V )
46 vex 2766 . . . . . . . . . . 11  |-  y  e. 
_V
4746a1i 9 . . . . . . . . . 10  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  y  e.  _V )
48 ovexg 5957 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  ( +g  `  G )  e.  _V  /\  y  e.  _V )  ->  (
x ( +g  `  G
) y )  e. 
_V )
4942, 45, 47, 48syl3anc 1249 . . . . . . . . 9  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  ( x ( +g  `  G ) y )  e.  _V )
50 elintg 3883 . . . . . . . . 9  |-  ( ( x ( +g  `  G
) y )  e. 
_V  ->  ( ( x ( +g  `  G
) y )  e. 
|^| S  <->  A. g  e.  S  ( x
( +g  `  G ) y )  e.  g ) )
5149, 50syl 14 . . . . . . . 8  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  ( ( x ( +g  `  G ) y )  e.  |^| S 
<-> 
A. g  e.  S  ( x ( +g  `  G ) y )  e.  g ) )
5251adantr 276 . . . . . . 7  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( ( x ( +g  `  G
) y )  e. 
|^| S  <->  A. g  e.  S  ( x
( +g  `  G ) y )  e.  g ) )
5340, 52mpbird 167 . . . . . 6  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( x ( +g  `  G ) y )  e.  |^| S )
5453anassrs 400 . . . . 5  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  /\  y  e.  |^| S )  -> 
( x ( +g  `  G ) y )  e.  |^| S )
5554ralrimiva 2570 . . . 4  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  A. y  e.  |^| S ( x ( +g  `  G
) y )  e. 
|^| S )
564adantlr 477 . . . . . . 7  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  /\  g  e.  S )  ->  g  e.  (SubGrp `  G )
)
5731adantll 476 . . . . . . 7  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  /\  g  e.  S )  ->  x  e.  g )
58 eqid 2196 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
5958subginvcl 13323 . . . . . . 7  |-  ( ( g  e.  (SubGrp `  G )  /\  x  e.  g )  ->  (
( invg `  G ) `  x
)  e.  g )
6056, 57, 59syl2anc 411 . . . . . 6  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  /\  g  e.  S )  ->  (
( invg `  G ) `  x
)  e.  g )
6160ralrimiva 2570 . . . . 5  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  A. g  e.  S  ( ( invg `  G ) `
 x )  e.  g )
6221adantr 276 . . . . . . 7  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  G  e.  Grp )
6311sselda 3184 . . . . . . 7  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  x  e.  ( Base `  G
) )
645, 58grpinvcl 13190 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  x
)  e.  ( Base `  G ) )
6562, 63, 64syl2anc 411 . . . . . 6  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  (
( invg `  G ) `  x
)  e.  ( Base `  G ) )
66 elintg 3883 . . . . . 6  |-  ( ( ( invg `  G ) `  x
)  e.  ( Base `  G )  ->  (
( ( invg `  G ) `  x
)  e.  |^| S  <->  A. g  e.  S  ( ( invg `  G ) `  x
)  e.  g ) )
6765, 66syl 14 . . . . 5  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  (
( ( invg `  G ) `  x
)  e.  |^| S  <->  A. g  e.  S  ( ( invg `  G ) `  x
)  e.  g ) )
6861, 67mpbird 167 . . . 4  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  (
( invg `  G ) `  x
)  e.  |^| S
)
6955, 68jca 306 . . 3  |-  ( ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S
)  /\  x  e.  |^| S )  ->  ( A. y  e.  |^| S
( x ( +g  `  G ) y )  e.  |^| S  /\  (
( invg `  G ) `  x
)  e.  |^| S
) )
7069ralrimiva 2570 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  A. x  e.  |^| S ( A. y  e.  |^| S ( x ( +g  `  G
) y )  e. 
|^| S  /\  (
( invg `  G ) `  x
)  e.  |^| S
) )
715, 37, 58issubg2m 13329 . . 3  |-  ( G  e.  Grp  ->  ( |^| S  e.  (SubGrp `  G )  <->  ( |^| S  C_  ( Base `  G
)  /\  E. w  w  e.  |^| S  /\  A. x  e.  |^| S
( A. y  e. 
|^| S ( x ( +g  `  G
) y )  e. 
|^| S  /\  (
( invg `  G ) `  x
)  e.  |^| S
) ) ) )
7218, 20, 713syl 17 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  ( |^| S  e.  (SubGrp `  G )  <->  (
|^| S  C_  ( Base `  G )  /\  E. w  w  e.  |^| S  /\  A. x  e. 
|^| S ( A. y  e.  |^| S ( x ( +g  `  G
) y )  e. 
|^| S  /\  (
( invg `  G ) `  x
)  e.  |^| S
) ) ) )
7311, 27, 70, 72mpbir3and 1182 1  |-  ( ( S  C_  (SubGrp `  G
)  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubGrp `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980   E.wex 1506    e. wcel 2167   A.wral 2475   _Vcvv 2763    C_ wss 3157   U.cuni 3840   |^|cint 3875   ` cfv 5259  (class class class)co 5923   Basecbs 12688   +g cplusg 12765   0gc0g 12937   Grpcgrp 13142   invgcminusg 13143  SubGrpcsubg 13307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-pre-ltirr 7993  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8065  df-mnf 8066  df-ltxr 8068  df-inn 8993  df-2 9051  df-ndx 12691  df-slot 12692  df-base 12694  df-sets 12695  df-iress 12696  df-plusg 12778  df-0g 12939  df-mgm 13009  df-sgrp 13055  df-mnd 13068  df-grp 13145  df-minusg 13146  df-subg 13310
This theorem is referenced by:  subrngintm  13778  subrgintm  13809
  Copyright terms: Public domain W3C validator