![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elirrv | Unicode version |
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
elirrv |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4370 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-setind 4366 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-v 2622 df-dif 3002 df-sn 3456 |
This theorem is referenced by: ruv 4379 dtruex 4388 tfrlemisucfn 6103 tfrlemisucaccv 6104 ltsopi 6933 |
Copyright terms: Public domain | W3C validator |