ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elirrv Unicode version

Theorem elirrv 4377
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
elirrv  |-  -.  x  e.  x

Proof of Theorem elirrv
StepHypRef Expression
1 elirr 4370 1  |-  -.  x  e.  x
Colors of variables: wff set class
Syntax hints:   -. wn 3
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-setind 4366
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-v 2622  df-dif 3002  df-sn 3456
This theorem is referenced by:  ruv  4379  dtruex  4388  tfrlemisucfn  6103  tfrlemisucaccv  6104  ltsopi  6933
  Copyright terms: Public domain W3C validator