ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucprcreg Unicode version

Theorem sucprcreg 4615
Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.)
Assertion
Ref Expression
sucprcreg  |-  ( -.  A  e.  _V  <->  suc  A  =  A )

Proof of Theorem sucprcreg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sucprc 4477 . 2  |-  ( -.  A  e.  _V  ->  suc 
A  =  A )
2 elirr 4607 . . . 4  |-  -.  A  e.  A
3 nfv 1552 . . . . 5  |-  F/ x  A  e.  A
4 eleq1 2270 . . . . 5  |-  ( x  =  A  ->  (
x  e.  A  <->  A  e.  A ) )
53, 4ceqsalg 2805 . . . 4  |-  ( A  e.  _V  ->  ( A. x ( x  =  A  ->  x  e.  A )  <->  A  e.  A ) )
62, 5mtbiri 677 . . 3  |-  ( A  e.  _V  ->  -.  A. x ( x  =  A  ->  x  e.  A ) )
7 velsn 3660 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
8 olc 713 . . . . . 6  |-  ( x  e.  { A }  ->  ( x  e.  A  \/  x  e.  { A } ) )
9 elun 3322 . . . . . . 7  |-  ( x  e.  ( A  u.  { A } )  <->  ( x  e.  A  \/  x  e.  { A } ) )
10 ssid 3221 . . . . . . . . 9  |-  A  C_  A
11 df-suc 4436 . . . . . . . . . . 11  |-  suc  A  =  ( A  u.  { A } )
1211eqeq1i 2215 . . . . . . . . . 10  |-  ( suc 
A  =  A  <->  ( A  u.  { A } )  =  A )
13 sseq1 3224 . . . . . . . . . 10  |-  ( ( A  u.  { A } )  =  A  ->  ( ( A  u.  { A }
)  C_  A  <->  A  C_  A
) )
1412, 13sylbi 121 . . . . . . . . 9  |-  ( suc 
A  =  A  -> 
( ( A  u.  { A } )  C_  A 
<->  A  C_  A )
)
1510, 14mpbiri 168 . . . . . . . 8  |-  ( suc 
A  =  A  -> 
( A  u.  { A } )  C_  A
)
1615sseld 3200 . . . . . . 7  |-  ( suc 
A  =  A  -> 
( x  e.  ( A  u.  { A } )  ->  x  e.  A ) )
179, 16biimtrrid 153 . . . . . 6  |-  ( suc 
A  =  A  -> 
( ( x  e.  A  \/  x  e. 
{ A } )  ->  x  e.  A
) )
188, 17syl5 32 . . . . 5  |-  ( suc 
A  =  A  -> 
( x  e.  { A }  ->  x  e.  A ) )
197, 18biimtrrid 153 . . . 4  |-  ( suc 
A  =  A  -> 
( x  =  A  ->  x  e.  A
) )
2019alrimiv 1898 . . 3  |-  ( suc 
A  =  A  ->  A. x ( x  =  A  ->  x  e.  A ) )
216, 20nsyl3 627 . 2  |-  ( suc 
A  =  A  ->  -.  A  e.  _V )
221, 21impbii 126 1  |-  ( -.  A  e.  _V  <->  suc  A  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 710   A.wal 1371    = wceq 1373    e. wcel 2178   _Vcvv 2776    u. cun 3172    C_ wss 3174   {csn 3643   suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-suc 4436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator