| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucprcreg | Unicode version | ||
| Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.) |
| Ref | Expression |
|---|---|
| sucprcreg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucprc 4447 |
. 2
| |
| 2 | elirr 4577 |
. . . 4
| |
| 3 | nfv 1542 |
. . . . 5
| |
| 4 | eleq1 2259 |
. . . . 5
| |
| 5 | 3, 4 | ceqsalg 2791 |
. . . 4
|
| 6 | 2, 5 | mtbiri 676 |
. . 3
|
| 7 | velsn 3639 |
. . . . 5
| |
| 8 | olc 712 |
. . . . . 6
| |
| 9 | elun 3304 |
. . . . . . 7
| |
| 10 | ssid 3203 |
. . . . . . . . 9
| |
| 11 | df-suc 4406 |
. . . . . . . . . . 11
| |
| 12 | 11 | eqeq1i 2204 |
. . . . . . . . . 10
|
| 13 | sseq1 3206 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | sylbi 121 |
. . . . . . . . 9
|
| 15 | 10, 14 | mpbiri 168 |
. . . . . . . 8
|
| 16 | 15 | sseld 3182 |
. . . . . . 7
|
| 17 | 9, 16 | biimtrrid 153 |
. . . . . 6
|
| 18 | 8, 17 | syl5 32 |
. . . . 5
|
| 19 | 7, 18 | biimtrrid 153 |
. . . 4
|
| 20 | 19 | alrimiv 1888 |
. . 3
|
| 21 | 6, 20 | nsyl3 627 |
. 2
|
| 22 | 1, 21 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-suc 4406 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |