Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucprcreg | Unicode version |
Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.) |
Ref | Expression |
---|---|
sucprcreg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucprc 4397 | . 2 | |
2 | elirr 4525 | . . . 4 | |
3 | nfv 1521 | . . . . 5 | |
4 | eleq1 2233 | . . . . 5 | |
5 | 3, 4 | ceqsalg 2758 | . . . 4 |
6 | 2, 5 | mtbiri 670 | . . 3 |
7 | velsn 3600 | . . . . 5 | |
8 | olc 706 | . . . . . 6 | |
9 | elun 3268 | . . . . . . 7 | |
10 | ssid 3167 | . . . . . . . . 9 | |
11 | df-suc 4356 | . . . . . . . . . . 11 | |
12 | 11 | eqeq1i 2178 | . . . . . . . . . 10 |
13 | sseq1 3170 | . . . . . . . . . 10 | |
14 | 12, 13 | sylbi 120 | . . . . . . . . 9 |
15 | 10, 14 | mpbiri 167 | . . . . . . . 8 |
16 | 15 | sseld 3146 | . . . . . . 7 |
17 | 9, 16 | syl5bir 152 | . . . . . 6 |
18 | 8, 17 | syl5 32 | . . . . 5 |
19 | 7, 18 | syl5bir 152 | . . . 4 |
20 | 19 | alrimiv 1867 | . . 3 |
21 | 6, 20 | nsyl3 621 | . 2 |
22 | 1, 21 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wo 703 wal 1346 wceq 1348 wcel 2141 cvv 2730 cun 3119 wss 3121 csn 3583 csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-suc 4356 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |