| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucprcreg | Unicode version | ||
| Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.) |
| Ref | Expression |
|---|---|
| sucprcreg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucprc 4477 |
. 2
| |
| 2 | elirr 4607 |
. . . 4
| |
| 3 | nfv 1552 |
. . . . 5
| |
| 4 | eleq1 2270 |
. . . . 5
| |
| 5 | 3, 4 | ceqsalg 2805 |
. . . 4
|
| 6 | 2, 5 | mtbiri 677 |
. . 3
|
| 7 | velsn 3660 |
. . . . 5
| |
| 8 | olc 713 |
. . . . . 6
| |
| 9 | elun 3322 |
. . . . . . 7
| |
| 10 | ssid 3221 |
. . . . . . . . 9
| |
| 11 | df-suc 4436 |
. . . . . . . . . . 11
| |
| 12 | 11 | eqeq1i 2215 |
. . . . . . . . . 10
|
| 13 | sseq1 3224 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | sylbi 121 |
. . . . . . . . 9
|
| 15 | 10, 14 | mpbiri 168 |
. . . . . . . 8
|
| 16 | 15 | sseld 3200 |
. . . . . . 7
|
| 17 | 9, 16 | biimtrrid 153 |
. . . . . 6
|
| 18 | 8, 17 | syl5 32 |
. . . . 5
|
| 19 | 7, 18 | biimtrrid 153 |
. . . 4
|
| 20 | 19 | alrimiv 1898 |
. . 3
|
| 21 | 6, 20 | nsyl3 627 |
. 2
|
| 22 | 1, 21 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-sn 3649 df-suc 4436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |