Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucprcreg | Unicode version |
Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.) |
Ref | Expression |
---|---|
sucprcreg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucprc 4390 | . 2 | |
2 | elirr 4518 | . . . 4 | |
3 | nfv 1516 | . . . . 5 | |
4 | eleq1 2229 | . . . . 5 | |
5 | 3, 4 | ceqsalg 2754 | . . . 4 |
6 | 2, 5 | mtbiri 665 | . . 3 |
7 | velsn 3593 | . . . . 5 | |
8 | olc 701 | . . . . . 6 | |
9 | elun 3263 | . . . . . . 7 | |
10 | ssid 3162 | . . . . . . . . 9 | |
11 | df-suc 4349 | . . . . . . . . . . 11 | |
12 | 11 | eqeq1i 2173 | . . . . . . . . . 10 |
13 | sseq1 3165 | . . . . . . . . . 10 | |
14 | 12, 13 | sylbi 120 | . . . . . . . . 9 |
15 | 10, 14 | mpbiri 167 | . . . . . . . 8 |
16 | 15 | sseld 3141 | . . . . . . 7 |
17 | 9, 16 | syl5bir 152 | . . . . . 6 |
18 | 8, 17 | syl5 32 | . . . . 5 |
19 | 7, 18 | syl5bir 152 | . . . 4 |
20 | 19 | alrimiv 1862 | . . 3 |
21 | 6, 20 | nsyl3 616 | . 2 |
22 | 1, 21 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wo 698 wal 1341 wceq 1343 wcel 2136 cvv 2726 cun 3114 wss 3116 csn 3576 csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-suc 4349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |