| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucprcreg | Unicode version | ||
| Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.) |
| Ref | Expression |
|---|---|
| sucprcreg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucprc 4503 |
. 2
| |
| 2 | elirr 4633 |
. . . 4
| |
| 3 | nfv 1574 |
. . . . 5
| |
| 4 | eleq1 2292 |
. . . . 5
| |
| 5 | 3, 4 | ceqsalg 2828 |
. . . 4
|
| 6 | 2, 5 | mtbiri 679 |
. . 3
|
| 7 | velsn 3683 |
. . . . 5
| |
| 8 | olc 716 |
. . . . . 6
| |
| 9 | elun 3345 |
. . . . . . 7
| |
| 10 | ssid 3244 |
. . . . . . . . 9
| |
| 11 | df-suc 4462 |
. . . . . . . . . . 11
| |
| 12 | 11 | eqeq1i 2237 |
. . . . . . . . . 10
|
| 13 | sseq1 3247 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | sylbi 121 |
. . . . . . . . 9
|
| 15 | 10, 14 | mpbiri 168 |
. . . . . . . 8
|
| 16 | 15 | sseld 3223 |
. . . . . . 7
|
| 17 | 9, 16 | biimtrrid 153 |
. . . . . 6
|
| 18 | 8, 17 | syl5 32 |
. . . . 5
|
| 19 | 7, 18 | biimtrrid 153 |
. . . 4
|
| 20 | 19 | alrimiv 1920 |
. . 3
|
| 21 | 6, 20 | nsyl3 629 |
. 2
|
| 22 | 1, 21 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-suc 4462 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |