| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sucprcreg | Unicode version | ||
| Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.) | 
| Ref | Expression | 
|---|---|
| sucprcreg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sucprc 4447 | 
. 2
 | |
| 2 | elirr 4577 | 
. . . 4
 | |
| 3 | nfv 1542 | 
. . . . 5
 | |
| 4 | eleq1 2259 | 
. . . . 5
 | |
| 5 | 3, 4 | ceqsalg 2791 | 
. . . 4
 | 
| 6 | 2, 5 | mtbiri 676 | 
. . 3
 | 
| 7 | velsn 3639 | 
. . . . 5
 | |
| 8 | olc 712 | 
. . . . . 6
 | |
| 9 | elun 3304 | 
. . . . . . 7
 | |
| 10 | ssid 3203 | 
. . . . . . . . 9
 | |
| 11 | df-suc 4406 | 
. . . . . . . . . . 11
 | |
| 12 | 11 | eqeq1i 2204 | 
. . . . . . . . . 10
 | 
| 13 | sseq1 3206 | 
. . . . . . . . . 10
 | |
| 14 | 12, 13 | sylbi 121 | 
. . . . . . . . 9
 | 
| 15 | 10, 14 | mpbiri 168 | 
. . . . . . . 8
 | 
| 16 | 15 | sseld 3182 | 
. . . . . . 7
 | 
| 17 | 9, 16 | biimtrrid 153 | 
. . . . . 6
 | 
| 18 | 8, 17 | syl5 32 | 
. . . . 5
 | 
| 19 | 7, 18 | biimtrrid 153 | 
. . . 4
 | 
| 20 | 19 | alrimiv 1888 | 
. . 3
 | 
| 21 | 6, 20 | nsyl3 627 | 
. 2
 | 
| 22 | 1, 21 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-suc 4406 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |