ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucprcreg Unicode version

Theorem sucprcreg 4598
Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.)
Assertion
Ref Expression
sucprcreg  |-  ( -.  A  e.  _V  <->  suc  A  =  A )

Proof of Theorem sucprcreg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sucprc 4460 . 2  |-  ( -.  A  e.  _V  ->  suc 
A  =  A )
2 elirr 4590 . . . 4  |-  -.  A  e.  A
3 nfv 1551 . . . . 5  |-  F/ x  A  e.  A
4 eleq1 2268 . . . . 5  |-  ( x  =  A  ->  (
x  e.  A  <->  A  e.  A ) )
53, 4ceqsalg 2800 . . . 4  |-  ( A  e.  _V  ->  ( A. x ( x  =  A  ->  x  e.  A )  <->  A  e.  A ) )
62, 5mtbiri 677 . . 3  |-  ( A  e.  _V  ->  -.  A. x ( x  =  A  ->  x  e.  A ) )
7 velsn 3650 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
8 olc 713 . . . . . 6  |-  ( x  e.  { A }  ->  ( x  e.  A  \/  x  e.  { A } ) )
9 elun 3314 . . . . . . 7  |-  ( x  e.  ( A  u.  { A } )  <->  ( x  e.  A  \/  x  e.  { A } ) )
10 ssid 3213 . . . . . . . . 9  |-  A  C_  A
11 df-suc 4419 . . . . . . . . . . 11  |-  suc  A  =  ( A  u.  { A } )
1211eqeq1i 2213 . . . . . . . . . 10  |-  ( suc 
A  =  A  <->  ( A  u.  { A } )  =  A )
13 sseq1 3216 . . . . . . . . . 10  |-  ( ( A  u.  { A } )  =  A  ->  ( ( A  u.  { A }
)  C_  A  <->  A  C_  A
) )
1412, 13sylbi 121 . . . . . . . . 9  |-  ( suc 
A  =  A  -> 
( ( A  u.  { A } )  C_  A 
<->  A  C_  A )
)
1510, 14mpbiri 168 . . . . . . . 8  |-  ( suc 
A  =  A  -> 
( A  u.  { A } )  C_  A
)
1615sseld 3192 . . . . . . 7  |-  ( suc 
A  =  A  -> 
( x  e.  ( A  u.  { A } )  ->  x  e.  A ) )
179, 16biimtrrid 153 . . . . . 6  |-  ( suc 
A  =  A  -> 
( ( x  e.  A  \/  x  e. 
{ A } )  ->  x  e.  A
) )
188, 17syl5 32 . . . . 5  |-  ( suc 
A  =  A  -> 
( x  e.  { A }  ->  x  e.  A ) )
197, 18biimtrrid 153 . . . 4  |-  ( suc 
A  =  A  -> 
( x  =  A  ->  x  e.  A
) )
2019alrimiv 1897 . . 3  |-  ( suc 
A  =  A  ->  A. x ( x  =  A  ->  x  e.  A ) )
216, 20nsyl3 627 . 2  |-  ( suc 
A  =  A  ->  -.  A  e.  _V )
221, 21impbii 126 1  |-  ( -.  A  e.  _V  <->  suc  A  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 710   A.wal 1371    = wceq 1373    e. wcel 2176   _Vcvv 2772    u. cun 3164    C_ wss 3166   {csn 3633   suc csuc 4413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-suc 4419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator