ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemisucfn Unicode version

Theorem tfrlemisucfn 6292
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6300. (Contributed by Jim Kingdon, 2-Jul-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
tfrlemisucfn.3  |-  ( ph  ->  z  e.  On )
tfrlemisucfn.4  |-  ( ph  ->  g  Fn  z )
tfrlemisucfn.5  |-  ( ph  ->  g  e.  A )
Assertion
Ref Expression
tfrlemisucfn  |-  ( ph  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  Fn  suc  z )
Distinct variable groups:    f, g, x, y, z, A    f, F, g, x, y, z    ph, y
Allowed substitution hints:    ph( x, z, f, g)

Proof of Theorem tfrlemisucfn
StepHypRef Expression
1 vex 2729 . . 3  |-  z  e. 
_V
21a1i 9 . 2  |-  ( ph  ->  z  e.  _V )
3 tfrlemisucfn.2 . . . 4  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
43tfrlem3-2d 6280 . . 3  |-  ( ph  ->  ( Fun  F  /\  ( F `  g )  e.  _V ) )
54simprd 113 . 2  |-  ( ph  ->  ( F `  g
)  e.  _V )
6 tfrlemisucfn.4 . 2  |-  ( ph  ->  g  Fn  z )
7 eqid 2165 . 2  |-  ( g  u.  { <. z ,  ( F `  g ) >. } )  =  ( g  u. 
{ <. z ,  ( F `  g )
>. } )
8 df-suc 4349 . 2  |-  suc  z  =  ( z  u. 
{ z } )
9 elirrv 4525 . . 3  |-  -.  z  e.  z
109a1i 9 . 2  |-  ( ph  ->  -.  z  e.  z )
112, 5, 6, 7, 8, 10fnunsn 5295 1  |-  ( ph  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  Fn  suc  z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1341    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   _Vcvv 2726    u. cun 3114   {csn 3576   <.cop 3579   Oncon0 4341   suc csuc 4343    |` cres 4606   Fun wfun 5182    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  tfrlemisucaccv  6293  tfrlemibfn  6296
  Copyright terms: Public domain W3C validator