ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemisucfn Unicode version

Theorem tfrlemisucfn 6214
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6222. (Contributed by Jim Kingdon, 2-Jul-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
tfrlemisucfn.3  |-  ( ph  ->  z  e.  On )
tfrlemisucfn.4  |-  ( ph  ->  g  Fn  z )
tfrlemisucfn.5  |-  ( ph  ->  g  e.  A )
Assertion
Ref Expression
tfrlemisucfn  |-  ( ph  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  Fn  suc  z )
Distinct variable groups:    f, g, x, y, z, A    f, F, g, x, y, z    ph, y
Allowed substitution hints:    ph( x, z, f, g)

Proof of Theorem tfrlemisucfn
StepHypRef Expression
1 vex 2684 . . 3  |-  z  e. 
_V
21a1i 9 . 2  |-  ( ph  ->  z  e.  _V )
3 tfrlemisucfn.2 . . . 4  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
43tfrlem3-2d 6202 . . 3  |-  ( ph  ->  ( Fun  F  /\  ( F `  g )  e.  _V ) )
54simprd 113 . 2  |-  ( ph  ->  ( F `  g
)  e.  _V )
6 tfrlemisucfn.4 . 2  |-  ( ph  ->  g  Fn  z )
7 eqid 2137 . 2  |-  ( g  u.  { <. z ,  ( F `  g ) >. } )  =  ( g  u. 
{ <. z ,  ( F `  g )
>. } )
8 df-suc 4288 . 2  |-  suc  z  =  ( z  u. 
{ z } )
9 elirrv 4458 . . 3  |-  -.  z  e.  z
109a1i 9 . 2  |-  ( ph  ->  -.  z  e.  z )
112, 5, 6, 7, 8, 10fnunsn 5225 1  |-  ( ph  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  Fn  suc  z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1329    = wceq 1331    e. wcel 1480   {cab 2123   A.wral 2414   E.wrex 2415   _Vcvv 2681    u. cun 3064   {csn 3522   <.cop 3525   Oncon0 4280   suc csuc 4282    |` cres 4536   Fun wfun 5112    Fn wfn 5113   ` cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fn 5121  df-fv 5126
This theorem is referenced by:  tfrlemisucaccv  6215  tfrlemibfn  6218
  Copyright terms: Public domain W3C validator