ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemisucfn Unicode version

Theorem tfrlemisucfn 6410
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6418. (Contributed by Jim Kingdon, 2-Jul-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
tfrlemisucfn.3  |-  ( ph  ->  z  e.  On )
tfrlemisucfn.4  |-  ( ph  ->  g  Fn  z )
tfrlemisucfn.5  |-  ( ph  ->  g  e.  A )
Assertion
Ref Expression
tfrlemisucfn  |-  ( ph  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  Fn  suc  z )
Distinct variable groups:    f, g, x, y, z, A    f, F, g, x, y, z    ph, y
Allowed substitution hints:    ph( x, z, f, g)

Proof of Theorem tfrlemisucfn
StepHypRef Expression
1 vex 2775 . . 3  |-  z  e. 
_V
21a1i 9 . 2  |-  ( ph  ->  z  e.  _V )
3 tfrlemisucfn.2 . . . 4  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
43tfrlem3-2d 6398 . . 3  |-  ( ph  ->  ( Fun  F  /\  ( F `  g )  e.  _V ) )
54simprd 114 . 2  |-  ( ph  ->  ( F `  g
)  e.  _V )
6 tfrlemisucfn.4 . 2  |-  ( ph  ->  g  Fn  z )
7 eqid 2205 . 2  |-  ( g  u.  { <. z ,  ( F `  g ) >. } )  =  ( g  u. 
{ <. z ,  ( F `  g )
>. } )
8 df-suc 4418 . 2  |-  suc  z  =  ( z  u. 
{ z } )
9 elirrv 4596 . . 3  |-  -.  z  e.  z
109a1i 9 . 2  |-  ( ph  ->  -.  z  e.  z )
112, 5, 6, 7, 8, 10fnunsn 5383 1  |-  ( ph  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  Fn  suc  z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   E.wrex 2485   _Vcvv 2772    u. cun 3164   {csn 3633   <.cop 3636   Oncon0 4410   suc csuc 4412    |` cres 4677   Fun wfun 5265    Fn wfn 5266   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279
This theorem is referenced by:  tfrlemisucaccv  6411  tfrlemibfn  6414
  Copyright terms: Public domain W3C validator