ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopi Unicode version

Theorem ltsopi 7387
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
ltsopi  |-  <N  Or  N.

Proof of Theorem ltsopi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elirrv 4584 . . . . . 6  |-  -.  x  e.  x
2 ltpiord 7386 . . . . . . 7  |-  ( ( x  e.  N.  /\  x  e.  N. )  ->  ( x  <N  x  <->  x  e.  x ) )
32anidms 397 . . . . . 6  |-  ( x  e.  N.  ->  (
x  <N  x  <->  x  e.  x ) )
41, 3mtbiri 676 . . . . 5  |-  ( x  e.  N.  ->  -.  x  <N  x )
54adantl 277 . . . 4  |-  ( ( T.  /\  x  e. 
N. )  ->  -.  x  <N  x )
6 pion 7377 . . . . . . . 8  |-  ( z  e.  N.  ->  z  e.  On )
7 ontr1 4424 . . . . . . . 8  |-  ( z  e.  On  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
86, 7syl 14 . . . . . . 7  |-  ( z  e.  N.  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
983ad2ant3 1022 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
10 ltpiord 7386 . . . . . . . 8  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  <N  y  <->  x  e.  y ) )
11103adant3 1019 . . . . . . 7  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
x  <N  y  <->  x  e.  y ) )
12 ltpiord 7386 . . . . . . . 8  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  <N  z  <->  y  e.  z ) )
13123adant1 1017 . . . . . . 7  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
y  <N  z  <->  y  e.  z ) )
1411, 13anbi12d 473 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  <N  y  /\  y  <N  z )  <-> 
( x  e.  y  /\  y  e.  z ) ) )
15 ltpiord 7386 . . . . . . 7  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  <N  z  <->  x  e.  z ) )
16153adant2 1018 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
x  <N  z  <->  x  e.  z ) )
179, 14, 163imtr4d 203 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  <N  y  /\  y  <N  z )  ->  x  <N  z
) )
1817adantl 277 . . . 4  |-  ( ( T.  /\  ( x  e.  N.  /\  y  e.  N.  /\  z  e. 
N. ) )  -> 
( ( x  <N  y  /\  y  <N  z
)  ->  x  <N  z ) )
195, 18ispod 4339 . . 3  |-  ( T. 
->  <N  Po  N. )
20 pinn 7376 . . . . . 6  |-  ( x  e.  N.  ->  x  e.  om )
21 pinn 7376 . . . . . 6  |-  ( y  e.  N.  ->  y  e.  om )
22 nntri3or 6551 . . . . . 6  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
2320, 21, 22syl2an 289 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
24 biidd 172 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  =  y  <-> 
x  =  y ) )
25 ltpiord 7386 . . . . . . 7  |-  ( ( y  e.  N.  /\  x  e.  N. )  ->  ( y  <N  x  <->  y  e.  x ) )
2625ancoms 268 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( y  <N  x  <->  y  e.  x ) )
2710, 24, 263orbi123d 1322 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( ( x  <N  y  \/  x  =  y  \/  y  <N  x
)  <->  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) )
2823, 27mpbird 167 . . . 4  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  <N  y  \/  x  =  y  \/  y  <N  x ) )
2928adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  N.  /\  y  e.  N. ) )  -> 
( x  <N  y  \/  x  =  y  \/  y  <N  x ) )
3019, 29issod 4354 . 2  |-  ( T. 
->  <N  Or  N. )
3130mptru 1373 1  |-  <N  Or  N.
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    /\ w3a 980   T. wtru 1365    e. wcel 2167   class class class wbr 4033    Or wor 4330   Oncon0 4398   omcom 4626   N.cnpi 7339    <N clti 7342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-tr 4132  df-eprel 4324  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-ni 7371  df-lti 7374
This theorem is referenced by:  ltsonq  7465
  Copyright terms: Public domain W3C validator