Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltsopi | Unicode version |
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) |
Ref | Expression |
---|---|
ltsopi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirrv 4506 | . . . . . 6 | |
2 | ltpiord 7233 | . . . . . . 7 | |
3 | 2 | anidms 395 | . . . . . 6 |
4 | 1, 3 | mtbiri 665 | . . . . 5 |
5 | 4 | adantl 275 | . . . 4 |
6 | pion 7224 | . . . . . . . 8 | |
7 | ontr1 4349 | . . . . . . . 8 | |
8 | 6, 7 | syl 14 | . . . . . . 7 |
9 | 8 | 3ad2ant3 1005 | . . . . . 6 |
10 | ltpiord 7233 | . . . . . . . 8 | |
11 | 10 | 3adant3 1002 | . . . . . . 7 |
12 | ltpiord 7233 | . . . . . . . 8 | |
13 | 12 | 3adant1 1000 | . . . . . . 7 |
14 | 11, 13 | anbi12d 465 | . . . . . 6 |
15 | ltpiord 7233 | . . . . . . 7 | |
16 | 15 | 3adant2 1001 | . . . . . 6 |
17 | 9, 14, 16 | 3imtr4d 202 | . . . . 5 |
18 | 17 | adantl 275 | . . . 4 |
19 | 5, 18 | ispod 4264 | . . 3 |
20 | pinn 7223 | . . . . . 6 | |
21 | pinn 7223 | . . . . . 6 | |
22 | nntri3or 6437 | . . . . . 6 | |
23 | 20, 21, 22 | syl2an 287 | . . . . 5 |
24 | biidd 171 | . . . . . 6 | |
25 | ltpiord 7233 | . . . . . . 7 | |
26 | 25 | ancoms 266 | . . . . . 6 |
27 | 10, 24, 26 | 3orbi123d 1293 | . . . . 5 |
28 | 23, 27 | mpbird 166 | . . . 4 |
29 | 28 | adantl 275 | . . 3 |
30 | 19, 29 | issod 4279 | . 2 |
31 | 30 | mptru 1344 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3o 962 w3a 963 wtru 1336 wcel 2128 class class class wbr 3965 wor 4255 con0 4323 com 4548 cnpi 7186 clti 7189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-tr 4063 df-eprel 4249 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4549 df-xp 4591 df-ni 7218 df-lti 7221 |
This theorem is referenced by: ltsonq 7312 |
Copyright terms: Public domain | W3C validator |