ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopi Unicode version

Theorem ltsopi 7468
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
ltsopi  |-  <N  Or  N.

Proof of Theorem ltsopi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elirrv 4614 . . . . . 6  |-  -.  x  e.  x
2 ltpiord 7467 . . . . . . 7  |-  ( ( x  e.  N.  /\  x  e.  N. )  ->  ( x  <N  x  <->  x  e.  x ) )
32anidms 397 . . . . . 6  |-  ( x  e.  N.  ->  (
x  <N  x  <->  x  e.  x ) )
41, 3mtbiri 677 . . . . 5  |-  ( x  e.  N.  ->  -.  x  <N  x )
54adantl 277 . . . 4  |-  ( ( T.  /\  x  e. 
N. )  ->  -.  x  <N  x )
6 pion 7458 . . . . . . . 8  |-  ( z  e.  N.  ->  z  e.  On )
7 ontr1 4454 . . . . . . . 8  |-  ( z  e.  On  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
86, 7syl 14 . . . . . . 7  |-  ( z  e.  N.  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
983ad2ant3 1023 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
10 ltpiord 7467 . . . . . . . 8  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  <N  y  <->  x  e.  y ) )
11103adant3 1020 . . . . . . 7  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
x  <N  y  <->  x  e.  y ) )
12 ltpiord 7467 . . . . . . . 8  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  <N  z  <->  y  e.  z ) )
13123adant1 1018 . . . . . . 7  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
y  <N  z  <->  y  e.  z ) )
1411, 13anbi12d 473 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  <N  y  /\  y  <N  z )  <-> 
( x  e.  y  /\  y  e.  z ) ) )
15 ltpiord 7467 . . . . . . 7  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  <N  z  <->  x  e.  z ) )
16153adant2 1019 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
x  <N  z  <->  x  e.  z ) )
179, 14, 163imtr4d 203 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  <N  y  /\  y  <N  z )  ->  x  <N  z
) )
1817adantl 277 . . . 4  |-  ( ( T.  /\  ( x  e.  N.  /\  y  e.  N.  /\  z  e. 
N. ) )  -> 
( ( x  <N  y  /\  y  <N  z
)  ->  x  <N  z ) )
195, 18ispod 4369 . . 3  |-  ( T. 
->  <N  Po  N. )
20 pinn 7457 . . . . . 6  |-  ( x  e.  N.  ->  x  e.  om )
21 pinn 7457 . . . . . 6  |-  ( y  e.  N.  ->  y  e.  om )
22 nntri3or 6602 . . . . . 6  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
2320, 21, 22syl2an 289 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
24 biidd 172 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  =  y  <-> 
x  =  y ) )
25 ltpiord 7467 . . . . . . 7  |-  ( ( y  e.  N.  /\  x  e.  N. )  ->  ( y  <N  x  <->  y  e.  x ) )
2625ancoms 268 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( y  <N  x  <->  y  e.  x ) )
2710, 24, 263orbi123d 1324 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( ( x  <N  y  \/  x  =  y  \/  y  <N  x
)  <->  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) )
2823, 27mpbird 167 . . . 4  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  <N  y  \/  x  =  y  \/  y  <N  x ) )
2928adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  N.  /\  y  e.  N. ) )  -> 
( x  <N  y  \/  x  =  y  \/  y  <N  x ) )
3019, 29issod 4384 . 2  |-  ( T. 
->  <N  Or  N. )
3130mptru 1382 1  |-  <N  Or  N.
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 980    /\ w3a 981   T. wtru 1374    e. wcel 2178   class class class wbr 4059    Or wor 4360   Oncon0 4428   omcom 4656   N.cnpi 7420    <N clti 7423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-tr 4159  df-eprel 4354  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-ni 7452  df-lti 7455
This theorem is referenced by:  ltsonq  7546
  Copyright terms: Public domain W3C validator