Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltsopi | Unicode version |
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) |
Ref | Expression |
---|---|
ltsopi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirrv 4532 | . . . . . 6 | |
2 | ltpiord 7281 | . . . . . . 7 | |
3 | 2 | anidms 395 | . . . . . 6 |
4 | 1, 3 | mtbiri 670 | . . . . 5 |
5 | 4 | adantl 275 | . . . 4 |
6 | pion 7272 | . . . . . . . 8 | |
7 | ontr1 4374 | . . . . . . . 8 | |
8 | 6, 7 | syl 14 | . . . . . . 7 |
9 | 8 | 3ad2ant3 1015 | . . . . . 6 |
10 | ltpiord 7281 | . . . . . . . 8 | |
11 | 10 | 3adant3 1012 | . . . . . . 7 |
12 | ltpiord 7281 | . . . . . . . 8 | |
13 | 12 | 3adant1 1010 | . . . . . . 7 |
14 | 11, 13 | anbi12d 470 | . . . . . 6 |
15 | ltpiord 7281 | . . . . . . 7 | |
16 | 15 | 3adant2 1011 | . . . . . 6 |
17 | 9, 14, 16 | 3imtr4d 202 | . . . . 5 |
18 | 17 | adantl 275 | . . . 4 |
19 | 5, 18 | ispod 4289 | . . 3 |
20 | pinn 7271 | . . . . . 6 | |
21 | pinn 7271 | . . . . . 6 | |
22 | nntri3or 6472 | . . . . . 6 | |
23 | 20, 21, 22 | syl2an 287 | . . . . 5 |
24 | biidd 171 | . . . . . 6 | |
25 | ltpiord 7281 | . . . . . . 7 | |
26 | 25 | ancoms 266 | . . . . . 6 |
27 | 10, 24, 26 | 3orbi123d 1306 | . . . . 5 |
28 | 23, 27 | mpbird 166 | . . . 4 |
29 | 28 | adantl 275 | . . 3 |
30 | 19, 29 | issod 4304 | . 2 |
31 | 30 | mptru 1357 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3o 972 w3a 973 wtru 1349 wcel 2141 class class class wbr 3989 wor 4280 con0 4348 com 4574 cnpi 7234 clti 7237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-tr 4088 df-eprel 4274 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-ni 7266 df-lti 7269 |
This theorem is referenced by: ltsonq 7360 |
Copyright terms: Public domain | W3C validator |