ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopi Unicode version

Theorem ltsopi 7380
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
ltsopi  |-  <N  Or  N.

Proof of Theorem ltsopi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elirrv 4580 . . . . . 6  |-  -.  x  e.  x
2 ltpiord 7379 . . . . . . 7  |-  ( ( x  e.  N.  /\  x  e.  N. )  ->  ( x  <N  x  <->  x  e.  x ) )
32anidms 397 . . . . . 6  |-  ( x  e.  N.  ->  (
x  <N  x  <->  x  e.  x ) )
41, 3mtbiri 676 . . . . 5  |-  ( x  e.  N.  ->  -.  x  <N  x )
54adantl 277 . . . 4  |-  ( ( T.  /\  x  e. 
N. )  ->  -.  x  <N  x )
6 pion 7370 . . . . . . . 8  |-  ( z  e.  N.  ->  z  e.  On )
7 ontr1 4420 . . . . . . . 8  |-  ( z  e.  On  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
86, 7syl 14 . . . . . . 7  |-  ( z  e.  N.  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
983ad2ant3 1022 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
10 ltpiord 7379 . . . . . . . 8  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  <N  y  <->  x  e.  y ) )
11103adant3 1019 . . . . . . 7  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
x  <N  y  <->  x  e.  y ) )
12 ltpiord 7379 . . . . . . . 8  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  <N  z  <->  y  e.  z ) )
13123adant1 1017 . . . . . . 7  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
y  <N  z  <->  y  e.  z ) )
1411, 13anbi12d 473 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  <N  y  /\  y  <N  z )  <-> 
( x  e.  y  /\  y  e.  z ) ) )
15 ltpiord 7379 . . . . . . 7  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  <N  z  <->  x  e.  z ) )
16153adant2 1018 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
x  <N  z  <->  x  e.  z ) )
179, 14, 163imtr4d 203 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  <N  y  /\  y  <N  z )  ->  x  <N  z
) )
1817adantl 277 . . . 4  |-  ( ( T.  /\  ( x  e.  N.  /\  y  e.  N.  /\  z  e. 
N. ) )  -> 
( ( x  <N  y  /\  y  <N  z
)  ->  x  <N  z ) )
195, 18ispod 4335 . . 3  |-  ( T. 
->  <N  Po  N. )
20 pinn 7369 . . . . . 6  |-  ( x  e.  N.  ->  x  e.  om )
21 pinn 7369 . . . . . 6  |-  ( y  e.  N.  ->  y  e.  om )
22 nntri3or 6546 . . . . . 6  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
2320, 21, 22syl2an 289 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
24 biidd 172 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  =  y  <-> 
x  =  y ) )
25 ltpiord 7379 . . . . . . 7  |-  ( ( y  e.  N.  /\  x  e.  N. )  ->  ( y  <N  x  <->  y  e.  x ) )
2625ancoms 268 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( y  <N  x  <->  y  e.  x ) )
2710, 24, 263orbi123d 1322 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( ( x  <N  y  \/  x  =  y  \/  y  <N  x
)  <->  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) )
2823, 27mpbird 167 . . . 4  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  <N  y  \/  x  =  y  \/  y  <N  x ) )
2928adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  N.  /\  y  e.  N. ) )  -> 
( x  <N  y  \/  x  =  y  \/  y  <N  x ) )
3019, 29issod 4350 . 2  |-  ( T. 
->  <N  Or  N. )
3130mptru 1373 1  |-  <N  Or  N.
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    /\ w3a 980   T. wtru 1365    e. wcel 2164   class class class wbr 4029    Or wor 4326   Oncon0 4394   omcom 4622   N.cnpi 7332    <N clti 7335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-tr 4128  df-eprel 4320  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-ni 7364  df-lti 7367
This theorem is referenced by:  ltsonq  7458
  Copyright terms: Public domain W3C validator