ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopi Unicode version

Theorem ltsopi 7503
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
ltsopi  |-  <N  Or  N.

Proof of Theorem ltsopi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elirrv 4639 . . . . . 6  |-  -.  x  e.  x
2 ltpiord 7502 . . . . . . 7  |-  ( ( x  e.  N.  /\  x  e.  N. )  ->  ( x  <N  x  <->  x  e.  x ) )
32anidms 397 . . . . . 6  |-  ( x  e.  N.  ->  (
x  <N  x  <->  x  e.  x ) )
41, 3mtbiri 679 . . . . 5  |-  ( x  e.  N.  ->  -.  x  <N  x )
54adantl 277 . . . 4  |-  ( ( T.  /\  x  e. 
N. )  ->  -.  x  <N  x )
6 pion 7493 . . . . . . . 8  |-  ( z  e.  N.  ->  z  e.  On )
7 ontr1 4479 . . . . . . . 8  |-  ( z  e.  On  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
86, 7syl 14 . . . . . . 7  |-  ( z  e.  N.  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
983ad2ant3 1044 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
10 ltpiord 7502 . . . . . . . 8  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  <N  y  <->  x  e.  y ) )
11103adant3 1041 . . . . . . 7  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
x  <N  y  <->  x  e.  y ) )
12 ltpiord 7502 . . . . . . . 8  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  <N  z  <->  y  e.  z ) )
13123adant1 1039 . . . . . . 7  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
y  <N  z  <->  y  e.  z ) )
1411, 13anbi12d 473 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  <N  y  /\  y  <N  z )  <-> 
( x  e.  y  /\  y  e.  z ) ) )
15 ltpiord 7502 . . . . . . 7  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  <N  z  <->  x  e.  z ) )
16153adant2 1040 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
x  <N  z  <->  x  e.  z ) )
179, 14, 163imtr4d 203 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  <N  y  /\  y  <N  z )  ->  x  <N  z
) )
1817adantl 277 . . . 4  |-  ( ( T.  /\  ( x  e.  N.  /\  y  e.  N.  /\  z  e. 
N. ) )  -> 
( ( x  <N  y  /\  y  <N  z
)  ->  x  <N  z ) )
195, 18ispod 4394 . . 3  |-  ( T. 
->  <N  Po  N. )
20 pinn 7492 . . . . . 6  |-  ( x  e.  N.  ->  x  e.  om )
21 pinn 7492 . . . . . 6  |-  ( y  e.  N.  ->  y  e.  om )
22 nntri3or 6637 . . . . . 6  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
2320, 21, 22syl2an 289 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
24 biidd 172 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  =  y  <-> 
x  =  y ) )
25 ltpiord 7502 . . . . . . 7  |-  ( ( y  e.  N.  /\  x  e.  N. )  ->  ( y  <N  x  <->  y  e.  x ) )
2625ancoms 268 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( y  <N  x  <->  y  e.  x ) )
2710, 24, 263orbi123d 1345 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( ( x  <N  y  \/  x  =  y  \/  y  <N  x
)  <->  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) )
2823, 27mpbird 167 . . . 4  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  <N  y  \/  x  =  y  \/  y  <N  x ) )
2928adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  N.  /\  y  e.  N. ) )  -> 
( x  <N  y  \/  x  =  y  \/  y  <N  x ) )
3019, 29issod 4409 . 2  |-  ( T. 
->  <N  Or  N. )
3130mptru 1404 1  |-  <N  Or  N.
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 1001    /\ w3a 1002   T. wtru 1396    e. wcel 2200   class class class wbr 4082    Or wor 4385   Oncon0 4453   omcom 4681   N.cnpi 7455    <N clti 7458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-eprel 4379  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-ni 7487  df-lti 7490
This theorem is referenced by:  ltsonq  7581
  Copyright terms: Public domain W3C validator