Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltsopi | Unicode version |
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) |
Ref | Expression |
---|---|
ltsopi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirrv 4525 | . . . . . 6 | |
2 | ltpiord 7260 | . . . . . . 7 | |
3 | 2 | anidms 395 | . . . . . 6 |
4 | 1, 3 | mtbiri 665 | . . . . 5 |
5 | 4 | adantl 275 | . . . 4 |
6 | pion 7251 | . . . . . . . 8 | |
7 | ontr1 4367 | . . . . . . . 8 | |
8 | 6, 7 | syl 14 | . . . . . . 7 |
9 | 8 | 3ad2ant3 1010 | . . . . . 6 |
10 | ltpiord 7260 | . . . . . . . 8 | |
11 | 10 | 3adant3 1007 | . . . . . . 7 |
12 | ltpiord 7260 | . . . . . . . 8 | |
13 | 12 | 3adant1 1005 | . . . . . . 7 |
14 | 11, 13 | anbi12d 465 | . . . . . 6 |
15 | ltpiord 7260 | . . . . . . 7 | |
16 | 15 | 3adant2 1006 | . . . . . 6 |
17 | 9, 14, 16 | 3imtr4d 202 | . . . . 5 |
18 | 17 | adantl 275 | . . . 4 |
19 | 5, 18 | ispod 4282 | . . 3 |
20 | pinn 7250 | . . . . . 6 | |
21 | pinn 7250 | . . . . . 6 | |
22 | nntri3or 6461 | . . . . . 6 | |
23 | 20, 21, 22 | syl2an 287 | . . . . 5 |
24 | biidd 171 | . . . . . 6 | |
25 | ltpiord 7260 | . . . . . . 7 | |
26 | 25 | ancoms 266 | . . . . . 6 |
27 | 10, 24, 26 | 3orbi123d 1301 | . . . . 5 |
28 | 23, 27 | mpbird 166 | . . . 4 |
29 | 28 | adantl 275 | . . 3 |
30 | 19, 29 | issod 4297 | . 2 |
31 | 30 | mptru 1352 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3o 967 w3a 968 wtru 1344 wcel 2136 class class class wbr 3982 wor 4273 con0 4341 com 4567 cnpi 7213 clti 7216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-eprel 4267 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-ni 7245 df-lti 7248 |
This theorem is referenced by: ltsonq 7339 |
Copyright terms: Public domain | W3C validator |