![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elirrv | GIF version |
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
elirrv | ⊢ ¬ 𝑥 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4534 | 1 ⊢ ¬ 𝑥 ∈ 𝑥 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-v 2737 df-dif 3129 df-sn 3595 |
This theorem is referenced by: ruv 4543 dtruex 4552 tfrlemisucfn 6315 tfrlemisucaccv 6316 ltsopi 7294 |
Copyright terms: Public domain | W3C validator |