ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elon2 Unicode version

Theorem elon2 4407
Description: An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.)
Assertion
Ref Expression
elon2  |-  ( A  e.  On  <->  ( Ord  A  /\  A  e.  _V ) )

Proof of Theorem elon2
StepHypRef Expression
1 eloni 4406 . . 3  |-  ( A  e.  On  ->  Ord  A )
2 elex 2771 . . 3  |-  ( A  e.  On  ->  A  e.  _V )
31, 2jca 306 . 2  |-  ( A  e.  On  ->  ( Ord  A  /\  A  e. 
_V ) )
4 elong 4404 . . 3  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  A ) )
54biimparc 299 . 2  |-  ( ( Ord  A  /\  A  e.  _V )  ->  A  e.  On )
63, 5impbii 126 1  |-  ( A  e.  On  <->  ( Ord  A  /\  A  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2164   _Vcvv 2760   Ord word 4393   Oncon0 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399
This theorem is referenced by:  tfrexlem  6387  pw1on  7286
  Copyright terms: Public domain W3C validator