ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elon2 Unicode version

Theorem elon2 4467
Description: An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.)
Assertion
Ref Expression
elon2  |-  ( A  e.  On  <->  ( Ord  A  /\  A  e.  _V ) )

Proof of Theorem elon2
StepHypRef Expression
1 eloni 4466 . . 3  |-  ( A  e.  On  ->  Ord  A )
2 elex 2811 . . 3  |-  ( A  e.  On  ->  A  e.  _V )
31, 2jca 306 . 2  |-  ( A  e.  On  ->  ( Ord  A  /\  A  e. 
_V ) )
4 elong 4464 . . 3  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  A ) )
54biimparc 299 . 2  |-  ( ( Ord  A  /\  A  e.  _V )  ->  A  e.  On )
63, 5impbii 126 1  |-  ( A  e.  On  <->  ( Ord  A  /\  A  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200   _Vcvv 2799   Ord word 4453   Oncon0 4454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459
This theorem is referenced by:  tfrexlem  6480  pw1on  7411
  Copyright terms: Public domain W3C validator