Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elon2 | GIF version |
Description: An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.) |
Ref | Expression |
---|---|
elon2 | ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4353 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | elex 2737 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
3 | 1, 2 | jca 304 | . 2 ⊢ (𝐴 ∈ On → (Ord 𝐴 ∧ 𝐴 ∈ V)) |
4 | elong 4351 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
5 | 4 | biimparc 297 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) → 𝐴 ∈ On) |
6 | 3, 5 | impbii 125 | 1 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2136 Vcvv 2726 Ord word 4340 Oncon0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 |
This theorem is referenced by: tfrexlem 6302 pw1on 7182 |
Copyright terms: Public domain | W3C validator |