![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elon2 | GIF version |
Description: An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.) |
Ref | Expression |
---|---|
elon2 | ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4406 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | elex 2771 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝐴 ∈ On → (Ord 𝐴 ∧ 𝐴 ∈ V)) |
4 | elong 4404 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
5 | 4 | biimparc 299 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) → 𝐴 ∈ On) |
6 | 3, 5 | impbii 126 | 1 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2164 Vcvv 2760 Ord word 4393 Oncon0 4394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-in 3159 df-ss 3166 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 |
This theorem is referenced by: tfrexlem 6387 pw1on 7286 |
Copyright terms: Public domain | W3C validator |