| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elon2 | GIF version | ||
| Description: An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.) |
| Ref | Expression |
|---|---|
| elon2 | ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 4427 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | elex 2785 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝐴 ∈ On → (Ord 𝐴 ∧ 𝐴 ∈ V)) |
| 4 | elong 4425 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 5 | 4 | biimparc 299 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) → 𝐴 ∈ On) |
| 6 | 3, 5 | impbii 126 | 1 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2177 Vcvv 2773 Ord word 4414 Oncon0 4415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3174 df-ss 3181 df-uni 3854 df-tr 4148 df-iord 4418 df-on 4420 |
| This theorem is referenced by: tfrexlem 6430 pw1on 7351 |
| Copyright terms: Public domain | W3C validator |