ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elon2 GIF version

Theorem elon2 4354
Description: An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.)
Assertion
Ref Expression
elon2 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))

Proof of Theorem elon2
StepHypRef Expression
1 eloni 4353 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 elex 2737 . . 3 (𝐴 ∈ On → 𝐴 ∈ V)
31, 2jca 304 . 2 (𝐴 ∈ On → (Ord 𝐴𝐴 ∈ V))
4 elong 4351 . . 3 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
54biimparc 297 . 2 ((Ord 𝐴𝐴 ∈ V) → 𝐴 ∈ On)
63, 5impbii 125 1 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 2136  Vcvv 2726  Ord word 4340  Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346
This theorem is referenced by:  tfrexlem  6302  pw1on  7182
  Copyright terms: Public domain W3C validator