ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elon2 GIF version

Theorem elon2 4378
Description: An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.)
Assertion
Ref Expression
elon2 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))

Proof of Theorem elon2
StepHypRef Expression
1 eloni 4377 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 elex 2750 . . 3 (𝐴 ∈ On → 𝐴 ∈ V)
31, 2jca 306 . 2 (𝐴 ∈ On → (Ord 𝐴𝐴 ∈ V))
4 elong 4375 . . 3 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
54biimparc 299 . 2 ((Ord 𝐴𝐴 ∈ V) → 𝐴 ∈ On)
63, 5impbii 126 1 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2148  Vcvv 2739  Ord word 4364  Oncon0 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812  df-tr 4104  df-iord 4368  df-on 4370
This theorem is referenced by:  tfrexlem  6337  pw1on  7227
  Copyright terms: Public domain W3C validator