ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltopss Unicode version

Theorem eltopss 12647
Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
Hypothesis
Ref Expression
1open.1  |-  X  = 
U. J
Assertion
Ref Expression
eltopss  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  A  C_  X )

Proof of Theorem eltopss
StepHypRef Expression
1 elssuni 3817 . . 3  |-  ( A  e.  J  ->  A  C_ 
U. J )
2 1open.1 . . 3  |-  X  = 
U. J
31, 2sseqtrrdi 3191 . 2  |-  ( A  e.  J  ->  A  C_  X )
43adantl 275 1  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  A  C_  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    C_ wss 3116   U.cuni 3789   Topctop 12635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790
This theorem is referenced by:  ntrss3  12763  opnneissb  12795  opnssneib  12796  opnneiss  12798  cnpnei  12859  imasnopn  12939
  Copyright terms: Public domain W3C validator