Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrrdi | Unicode version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrrdi.1 | |
sseqtrrdi.2 |
Ref | Expression |
---|---|
sseqtrrdi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrrdi.1 | . 2 | |
2 | sseqtrrdi.2 | . . 3 | |
3 | 2 | eqcomi 2174 | . 2 |
4 | 1, 3 | sseqtrdi 3195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: iunpw 4463 iotanul 5173 iotass 5175 tfrlem9 6296 tfrlemibfn 6305 tfrlemiubacc 6307 tfrlemi14d 6310 tfr1onlemssrecs 6316 tfr1onlemres 6326 tfrcllemres 6339 exmidfodomrlemr 7172 exmidfodomrlemrALT 7173 uznnssnn 9529 shftfvalg 10775 shftfval 10778 clim2prod 11495 eltopss 12766 difopn 12867 tgrest 12928 txuni2 13015 tgioo 13305 |
Copyright terms: Public domain | W3C validator |