ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrdi Unicode version

Theorem sseqtrrdi 3216
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrrdi.1  |-  ( ph  ->  A  C_  B )
sseqtrrdi.2  |-  C  =  B
Assertion
Ref Expression
sseqtrrdi  |-  ( ph  ->  A  C_  C )

Proof of Theorem sseqtrrdi
StepHypRef Expression
1 sseqtrrdi.1 . 2  |-  ( ph  ->  A  C_  B )
2 sseqtrrdi.2 . . 3  |-  C  =  B
32eqcomi 2191 . 2  |-  B  =  C
41, 3sseqtrdi 3215 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    C_ wss 3141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-11 1516  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-in 3147  df-ss 3154
This theorem is referenced by:  iunpw  4492  iotanul  5205  iotass  5207  tfrlem9  6333  tfrlemibfn  6342  tfrlemiubacc  6344  tfrlemi14d  6347  tfr1onlemssrecs  6353  tfr1onlemres  6363  tfrcllemres  6376  exmidfodomrlemr  7214  exmidfodomrlemrALT  7215  uznnssnn  9590  shftfvalg  10840  shftfval  10843  clim2prod  11560  reldvdsrsrg  13324  dvdsrvald  13325  dvdsrex  13330  eltopss  13749  difopn  13848  tgrest  13909  txuni2  13996  tgioo  14286
  Copyright terms: Public domain W3C validator