| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrdi | Unicode version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrdi.1 |
|
| sseqtrrdi.2 |
|
| Ref | Expression |
|---|---|
| sseqtrrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrdi.1 |
. 2
| |
| 2 | sseqtrrdi.2 |
. . 3
| |
| 3 | 2 | eqcomi 2210 |
. 2
|
| 4 | 1, 3 | sseqtrdi 3245 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: iunpw 4540 iotanul 5261 iotass 5263 tfrlem9 6423 tfrlemibfn 6432 tfrlemiubacc 6434 tfrlemi14d 6437 tfr1onlemssrecs 6443 tfr1onlemres 6453 tfrcllemres 6466 exmidfodomrlemr 7336 exmidfodomrlemrALT 7337 uznnssnn 9728 shftfvalg 11214 shftfval 11217 clim2prod 11935 reldvdsrsrg 13939 dvdsrvald 13940 dvdsrex 13945 eltopss 14566 difopn 14665 tgrest 14726 txuni2 14813 tgioo 15111 plycoeid3 15314 |
| Copyright terms: Public domain | W3C validator |