| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrdi | Unicode version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrdi.1 |
|
| sseqtrrdi.2 |
|
| Ref | Expression |
|---|---|
| sseqtrrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrdi.1 |
. 2
| |
| 2 | sseqtrrdi.2 |
. . 3
| |
| 3 | 2 | eqcomi 2208 |
. 2
|
| 4 | 1, 3 | sseqtrdi 3240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: iunpw 4526 iotanul 5246 iotass 5248 tfrlem9 6404 tfrlemibfn 6413 tfrlemiubacc 6415 tfrlemi14d 6418 tfr1onlemssrecs 6424 tfr1onlemres 6434 tfrcllemres 6447 exmidfodomrlemr 7309 exmidfodomrlemrALT 7310 uznnssnn 9697 shftfvalg 11071 shftfval 11074 clim2prod 11792 reldvdsrsrg 13796 dvdsrvald 13797 dvdsrex 13802 eltopss 14423 difopn 14522 tgrest 14583 txuni2 14670 tgioo 14968 plycoeid3 15171 |
| Copyright terms: Public domain | W3C validator |