| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrdi | Unicode version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrdi.1 |
|
| sseqtrrdi.2 |
|
| Ref | Expression |
|---|---|
| sseqtrrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrdi.1 |
. 2
| |
| 2 | sseqtrrdi.2 |
. . 3
| |
| 3 | 2 | eqcomi 2200 |
. 2
|
| 4 | 1, 3 | sseqtrdi 3232 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: iunpw 4516 iotanul 5235 iotass 5237 tfrlem9 6378 tfrlemibfn 6387 tfrlemiubacc 6389 tfrlemi14d 6392 tfr1onlemssrecs 6398 tfr1onlemres 6408 tfrcllemres 6421 exmidfodomrlemr 7271 exmidfodomrlemrALT 7272 uznnssnn 9653 shftfvalg 10985 shftfval 10988 clim2prod 11706 reldvdsrsrg 13658 dvdsrvald 13659 dvdsrex 13664 eltopss 14255 difopn 14354 tgrest 14415 txuni2 14502 tgioo 14800 plycoeid3 15003 |
| Copyright terms: Public domain | W3C validator |