| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrdi | Unicode version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrdi.1 |
|
| sseqtrrdi.2 |
|
| Ref | Expression |
|---|---|
| sseqtrrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrdi.1 |
. 2
| |
| 2 | sseqtrrdi.2 |
. . 3
| |
| 3 | 2 | eqcomi 2200 |
. 2
|
| 4 | 1, 3 | sseqtrdi 3231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: iunpw 4515 iotanul 5234 iotass 5236 tfrlem9 6377 tfrlemibfn 6386 tfrlemiubacc 6388 tfrlemi14d 6391 tfr1onlemssrecs 6397 tfr1onlemres 6407 tfrcllemres 6420 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 uznnssnn 9651 shftfvalg 10983 shftfval 10986 clim2prod 11704 reldvdsrsrg 13648 dvdsrvald 13649 dvdsrex 13654 eltopss 14245 difopn 14344 tgrest 14405 txuni2 14492 tgioo 14790 plycoeid3 14993 |
| Copyright terms: Public domain | W3C validator |