| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrdi | Unicode version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrdi.1 |
|
| sseqtrrdi.2 |
|
| Ref | Expression |
|---|---|
| sseqtrrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrdi.1 |
. 2
| |
| 2 | sseqtrrdi.2 |
. . 3
| |
| 3 | 2 | eqcomi 2233 |
. 2
|
| 4 | 1, 3 | sseqtrdi 3272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: iunpw 4570 iotanul 5293 iotass 5295 tfrlem9 6463 tfrlemibfn 6472 tfrlemiubacc 6474 tfrlemi14d 6477 tfr1onlemssrecs 6483 tfr1onlemres 6493 tfrcllemres 6506 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 uznnssnn 9768 pfxccatpfx2 11264 shftfvalg 11324 shftfval 11327 clim2prod 12045 reldvdsrsrg 14050 dvdsrvald 14051 dvdsrex 14056 eltopss 14677 difopn 14776 tgrest 14837 txuni2 14924 tgioo 15222 plycoeid3 15425 |
| Copyright terms: Public domain | W3C validator |