ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnssneib Unicode version

Theorem opnssneib 12697
Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.)
Hypothesis
Ref Expression
neips.1  |-  X  = 
U. J
Assertion
Ref Expression
opnssneib  |-  ( ( J  e.  Top  /\  S  e.  J  /\  N  C_  X )  -> 
( S  C_  N  <->  N  e.  ( ( nei `  J ) `  S
) ) )

Proof of Theorem opnssneib
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simplr 520 . . . . . 6  |-  ( ( ( S  e.  J  /\  N  C_  X )  /\  S  C_  N
)  ->  N  C_  X
)
2 sseq2 3161 . . . . . . . . . 10  |-  ( g  =  S  ->  ( S  C_  g  <->  S  C_  S
) )
3 sseq1 3160 . . . . . . . . . 10  |-  ( g  =  S  ->  (
g  C_  N  <->  S  C_  N
) )
42, 3anbi12d 465 . . . . . . . . 9  |-  ( g  =  S  ->  (
( S  C_  g  /\  g  C_  N )  <-> 
( S  C_  S  /\  S  C_  N ) ) )
5 ssid 3157 . . . . . . . . . 10  |-  S  C_  S
65biantrur 301 . . . . . . . . 9  |-  ( S 
C_  N  <->  ( S  C_  S  /\  S  C_  N ) )
74, 6bitr4di 197 . . . . . . . 8  |-  ( g  =  S  ->  (
( S  C_  g  /\  g  C_  N )  <-> 
S  C_  N )
)
87rspcev 2825 . . . . . . 7  |-  ( ( S  e.  J  /\  S  C_  N )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
98adantlr 469 . . . . . 6  |-  ( ( ( S  e.  J  /\  N  C_  X )  /\  S  C_  N
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
101, 9jca 304 . . . . 5  |-  ( ( ( S  e.  J  /\  N  C_  X )  /\  S  C_  N
)  ->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) )
1110ex 114 . . . 4  |-  ( ( S  e.  J  /\  N  C_  X )  -> 
( S  C_  N  ->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
12113adant1 1004 . . 3  |-  ( ( J  e.  Top  /\  S  e.  J  /\  N  C_  X )  -> 
( S  C_  N  ->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
13 neips.1 . . . . . 6  |-  X  = 
U. J
1413eltopss 12548 . . . . 5  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  S  C_  X )
1513isnei 12685 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
1614, 15syldan 280 . . . 4  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  ( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
17163adant3 1006 . . 3  |-  ( ( J  e.  Top  /\  S  e.  J  /\  N  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
1812, 17sylibrd 168 . 2  |-  ( ( J  e.  Top  /\  S  e.  J  /\  N  C_  X )  -> 
( S  C_  N  ->  N  e.  ( ( nei `  J ) `
 S ) ) )
19 ssnei 12692 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  N )
2019ex 114 . . 3  |-  ( J  e.  Top  ->  ( N  e.  ( ( nei `  J ) `  S )  ->  S  C_  N ) )
21203ad2ant1 1007 . 2  |-  ( ( J  e.  Top  /\  S  e.  J  /\  N  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  ->  S  C_  N )
)
2218, 21impbid 128 1  |-  ( ( J  e.  Top  /\  S  e.  J  /\  N  C_  X )  -> 
( S  C_  N  <->  N  e.  ( ( nei `  J ) `  S
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 967    = wceq 1342    e. wcel 2135   E.wrex 2443    C_ wss 3111   U.cuni 3783   ` cfv 5182   Topctop 12536   neicnei 12679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-top 12537  df-nei 12680
This theorem is referenced by:  neissex  12706
  Copyright terms: Public domain W3C validator