Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opnssneib | Unicode version |
Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.) |
Ref | Expression |
---|---|
neips.1 |
Ref | Expression |
---|---|
opnssneib |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 525 | . . . . . 6 | |
2 | sseq2 3171 | . . . . . . . . . 10 | |
3 | sseq1 3170 | . . . . . . . . . 10 | |
4 | 2, 3 | anbi12d 470 | . . . . . . . . 9 |
5 | ssid 3167 | . . . . . . . . . 10 | |
6 | 5 | biantrur 301 | . . . . . . . . 9 |
7 | 4, 6 | bitr4di 197 | . . . . . . . 8 |
8 | 7 | rspcev 2834 | . . . . . . 7 |
9 | 8 | adantlr 474 | . . . . . 6 |
10 | 1, 9 | jca 304 | . . . . 5 |
11 | 10 | ex 114 | . . . 4 |
12 | 11 | 3adant1 1010 | . . 3 |
13 | neips.1 | . . . . . 6 | |
14 | 13 | eltopss 12801 | . . . . 5 |
15 | 13 | isnei 12938 | . . . . 5 |
16 | 14, 15 | syldan 280 | . . . 4 |
17 | 16 | 3adant3 1012 | . . 3 |
18 | 12, 17 | sylibrd 168 | . 2 |
19 | ssnei 12945 | . . . 4 | |
20 | 19 | ex 114 | . . 3 |
21 | 20 | 3ad2ant1 1013 | . 2 |
22 | 18, 21 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wrex 2449 wss 3121 cuni 3796 cfv 5198 ctop 12789 cnei 12932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-top 12790 df-nei 12933 |
This theorem is referenced by: neissex 12959 |
Copyright terms: Public domain | W3C validator |