Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltopss GIF version

Theorem eltopss 12186
 Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
Hypothesis
Ref Expression
1open.1 𝑋 = 𝐽
Assertion
Ref Expression
eltopss ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)

Proof of Theorem eltopss
StepHypRef Expression
1 elssuni 3764 . . 3 (𝐴𝐽𝐴 𝐽)
2 1open.1 . . 3 𝑋 = 𝐽
31, 2sseqtrrdi 3146 . 2 (𝐴𝐽𝐴𝑋)
43adantl 275 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1331   ∈ wcel 1480   ⊆ wss 3071  ∪ cuni 3736  Topctop 12174 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-in 3077  df-ss 3084  df-uni 3737 This theorem is referenced by:  ntrss3  12302  opnneissb  12334  opnssneib  12335  opnneiss  12337  cnpnei  12398  imasnopn  12478
 Copyright terms: Public domain W3C validator