ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltopss GIF version

Theorem eltopss 14525
Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
Hypothesis
Ref Expression
1open.1 𝑋 = 𝐽
Assertion
Ref Expression
eltopss ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)

Proof of Theorem eltopss
StepHypRef Expression
1 elssuni 3880 . . 3 (𝐴𝐽𝐴 𝐽)
2 1open.1 . . 3 𝑋 = 𝐽
31, 2sseqtrrdi 3243 . 2 (𝐴𝐽𝐴𝑋)
43adantl 277 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wss 3167   cuni 3852  Topctop 14513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3173  df-ss 3180  df-uni 3853
This theorem is referenced by:  ntrss3  14639  opnneissb  14671  opnssneib  14672  opnneiss  14674  cnpnei  14735  imasnopn  14815
  Copyright terms: Public domain W3C validator