Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eltopss | GIF version |
Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.) |
Ref | Expression |
---|---|
1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
eltopss | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 3824 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
2 | 1open.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | sseqtrrdi 3196 | . 2 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ 𝑋) |
4 | 3 | adantl 275 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 ∪ cuni 3796 Topctop 12789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 |
This theorem is referenced by: ntrss3 12917 opnneissb 12949 opnssneib 12950 opnneiss 12952 cnpnei 13013 imasnopn 13093 |
Copyright terms: Public domain | W3C validator |