ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvss Unicode version

Theorem cocnvss 5136
Description: Upper bound for the composed of a relation and an inverse relation. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
cocnvss  |-  ( S  o.  `' R ) 
C_  ( ran  ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R ) )

Proof of Theorem cocnvss
StepHypRef Expression
1 cocnvres 5135 . 2  |-  ( S  o.  `' R )  =  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) )
2 cossxp 5133 . . 3  |-  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) ) 
C_  ( dom  `' ( R  |`  dom  S
)  X.  ran  ( S  |`  dom  R ) )
3 df-rn 4622 . . . . 5  |-  ran  ( R  |`  dom  S )  =  dom  `' ( R  |`  dom  S )
43eqimss2i 3204 . . . 4  |-  dom  `' ( R  |`  dom  S
)  C_  ran  ( R  |`  dom  S )
5 ssid 3167 . . . 4  |-  ran  ( S  |`  dom  R ) 
C_  ran  ( S  |` 
dom  R )
6 xpss12 4718 . . . 4  |-  ( ( dom  `' ( R  |`  dom  S )  C_  ran  ( R  |`  dom  S
)  /\  ran  ( S  |`  dom  R )  C_  ran  ( S  |`  dom  R
) )  ->  ( dom  `' ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R
) )  C_  ( ran  ( R  |`  dom  S
)  X.  ran  ( S  |`  dom  R ) ) )
74, 5, 6mp2an 424 . . 3  |-  ( dom  `' ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R
) )  C_  ( ran  ( R  |`  dom  S
)  X.  ran  ( S  |`  dom  R ) )
82, 7sstri 3156 . 2  |-  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) ) 
C_  ( ran  ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R ) )
91, 8eqsstri 3179 1  |-  ( S  o.  `' R ) 
C_  ( ran  ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R ) )
Colors of variables: wff set class
Syntax hints:    C_ wss 3121    X. cxp 4609   `'ccnv 4610   dom cdm 4611   ran crn 4612    |` cres 4613    o. ccom 4615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623
This theorem is referenced by:  caserel  7064
  Copyright terms: Public domain W3C validator