ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvss Unicode version

Theorem cocnvss 4969
Description: Upper bound for the composed of a relation and an inverse relation. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
cocnvss  |-  ( S  o.  `' R ) 
C_  ( ran  ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R ) )

Proof of Theorem cocnvss
StepHypRef Expression
1 cocnvres 4968 . 2  |-  ( S  o.  `' R )  =  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) )
2 cossxp 4966 . . 3  |-  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) ) 
C_  ( dom  `' ( R  |`  dom  S
)  X.  ran  ( S  |`  dom  R ) )
3 df-rn 4463 . . . . 5  |-  ran  ( R  |`  dom  S )  =  dom  `' ( R  |`  dom  S )
43eqimss2i 3082 . . . 4  |-  dom  `' ( R  |`  dom  S
)  C_  ran  ( R  |`  dom  S )
5 ssid 3045 . . . 4  |-  ran  ( S  |`  dom  R ) 
C_  ran  ( S  |` 
dom  R )
6 xpss12 4558 . . . 4  |-  ( ( dom  `' ( R  |`  dom  S )  C_  ran  ( R  |`  dom  S
)  /\  ran  ( S  |`  dom  R )  C_  ran  ( S  |`  dom  R
) )  ->  ( dom  `' ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R
) )  C_  ( ran  ( R  |`  dom  S
)  X.  ran  ( S  |`  dom  R ) ) )
74, 5, 6mp2an 418 . . 3  |-  ( dom  `' ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R
) )  C_  ( ran  ( R  |`  dom  S
)  X.  ran  ( S  |`  dom  R ) )
82, 7sstri 3035 . 2  |-  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) ) 
C_  ( ran  ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R ) )
91, 8eqsstri 3057 1  |-  ( S  o.  `' R ) 
C_  ( ran  ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R ) )
Colors of variables: wff set class
Syntax hints:    C_ wss 3000    X. cxp 4450   `'ccnv 4451   dom cdm 4452   ran crn 4453    |` cres 4454    o. ccom 4456
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852  df-opab 3906  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464
This theorem is referenced by:  caserel  6832
  Copyright terms: Public domain W3C validator