ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvss Unicode version

Theorem cocnvss 5155
Description: Upper bound for the composed of a relation and an inverse relation. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
cocnvss  |-  ( S  o.  `' R ) 
C_  ( ran  ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R ) )

Proof of Theorem cocnvss
StepHypRef Expression
1 cocnvres 5154 . 2  |-  ( S  o.  `' R )  =  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) )
2 cossxp 5152 . . 3  |-  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) ) 
C_  ( dom  `' ( R  |`  dom  S
)  X.  ran  ( S  |`  dom  R ) )
3 df-rn 4638 . . . . 5  |-  ran  ( R  |`  dom  S )  =  dom  `' ( R  |`  dom  S )
43eqimss2i 3213 . . . 4  |-  dom  `' ( R  |`  dom  S
)  C_  ran  ( R  |`  dom  S )
5 ssid 3176 . . . 4  |-  ran  ( S  |`  dom  R ) 
C_  ran  ( S  |` 
dom  R )
6 xpss12 4734 . . . 4  |-  ( ( dom  `' ( R  |`  dom  S )  C_  ran  ( R  |`  dom  S
)  /\  ran  ( S  |`  dom  R )  C_  ran  ( S  |`  dom  R
) )  ->  ( dom  `' ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R
) )  C_  ( ran  ( R  |`  dom  S
)  X.  ran  ( S  |`  dom  R ) ) )
74, 5, 6mp2an 426 . . 3  |-  ( dom  `' ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R
) )  C_  ( ran  ( R  |`  dom  S
)  X.  ran  ( S  |`  dom  R ) )
82, 7sstri 3165 . 2  |-  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) ) 
C_  ( ran  ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R ) )
91, 8eqsstri 3188 1  |-  ( S  o.  `' R ) 
C_  ( ran  ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R ) )
Colors of variables: wff set class
Syntax hints:    C_ wss 3130    X. cxp 4625   `'ccnv 4626   dom cdm 4627   ran crn 4628    |` cres 4629    o. ccom 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639
This theorem is referenced by:  caserel  7086
  Copyright terms: Public domain W3C validator