ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvss Unicode version

Theorem cocnvss 5146
Description: Upper bound for the composed of a relation and an inverse relation. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
cocnvss  |-  ( S  o.  `' R ) 
C_  ( ran  ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R ) )

Proof of Theorem cocnvss
StepHypRef Expression
1 cocnvres 5145 . 2  |-  ( S  o.  `' R )  =  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) )
2 cossxp 5143 . . 3  |-  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) ) 
C_  ( dom  `' ( R  |`  dom  S
)  X.  ran  ( S  |`  dom  R ) )
3 df-rn 4631 . . . . 5  |-  ran  ( R  |`  dom  S )  =  dom  `' ( R  |`  dom  S )
43eqimss2i 3210 . . . 4  |-  dom  `' ( R  |`  dom  S
)  C_  ran  ( R  |`  dom  S )
5 ssid 3173 . . . 4  |-  ran  ( S  |`  dom  R ) 
C_  ran  ( S  |` 
dom  R )
6 xpss12 4727 . . . 4  |-  ( ( dom  `' ( R  |`  dom  S )  C_  ran  ( R  |`  dom  S
)  /\  ran  ( S  |`  dom  R )  C_  ran  ( S  |`  dom  R
) )  ->  ( dom  `' ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R
) )  C_  ( ran  ( R  |`  dom  S
)  X.  ran  ( S  |`  dom  R ) ) )
74, 5, 6mp2an 426 . . 3  |-  ( dom  `' ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R
) )  C_  ( ran  ( R  |`  dom  S
)  X.  ran  ( S  |`  dom  R ) )
82, 7sstri 3162 . 2  |-  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) ) 
C_  ( ran  ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R ) )
91, 8eqsstri 3185 1  |-  ( S  o.  `' R ) 
C_  ( ran  ( R  |`  dom  S )  X.  ran  ( S  |`  dom  R ) )
Colors of variables: wff set class
Syntax hints:    C_ wss 3127    X. cxp 4618   `'ccnv 4619   dom cdm 4620   ran crn 4621    |` cres 4622    o. ccom 4624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632
This theorem is referenced by:  caserel  7076
  Copyright terms: Public domain W3C validator