| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hmeores | Unicode version | ||
| Description: The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmeores.1 |
|
| Ref | Expression |
|---|---|
| hmeores |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocn 14892 |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | hmeores.1 |
. . . . 5
| |
| 4 | 3 | cnrest 14822 |
. . . 4
|
| 5 | 2, 4 | sylancom 420 |
. . 3
|
| 6 | cntop2 14789 |
. . . . . 6
| |
| 7 | 2, 6 | syl 14 |
. . . . 5
|
| 8 | eqid 2207 |
. . . . . 6
| |
| 9 | 8 | toptopon 14605 |
. . . . 5
|
| 10 | 7, 9 | sylib 122 |
. . . 4
|
| 11 | df-ima 4706 |
. . . . . 6
| |
| 12 | 11 | eqimss2i 3258 |
. . . . 5
|
| 13 | 12 | a1i 9 |
. . . 4
|
| 14 | imassrn 5052 |
. . . . 5
| |
| 15 | 3, 8 | cnf 14791 |
. . . . . . 7
|
| 16 | 2, 15 | syl 14 |
. . . . . 6
|
| 17 | 16 | frnd 5455 |
. . . . 5
|
| 18 | 14, 17 | sstrid 3212 |
. . . 4
|
| 19 | cnrest2 14823 |
. . . 4
| |
| 20 | 10, 13, 18, 19 | syl3anc 1250 |
. . 3
|
| 21 | 5, 20 | mpbid 147 |
. 2
|
| 22 | hmeocnvcn 14893 |
. . . . . 6
| |
| 23 | 22 | adantr 276 |
. . . . 5
|
| 24 | 8, 3 | cnf 14791 |
. . . . 5
|
| 25 | ffun 5448 |
. . . . 5
| |
| 26 | funcnvres 5366 |
. . . . 5
| |
| 27 | 23, 24, 25, 26 | 4syl 18 |
. . . 4
|
| 28 | 8 | cnrest 14822 |
. . . . 5
|
| 29 | 23, 18, 28 | syl2anc 411 |
. . . 4
|
| 30 | 27, 29 | eqeltrd 2284 |
. . 3
|
| 31 | cntop1 14788 |
. . . . . 6
| |
| 32 | 2, 31 | syl 14 |
. . . . 5
|
| 33 | 3 | toptopon 14605 |
. . . . 5
|
| 34 | 32, 33 | sylib 122 |
. . . 4
|
| 35 | dfdm4 4889 |
. . . . . 6
| |
| 36 | fssres 5473 |
. . . . . . . 8
| |
| 37 | 16, 36 | sylancom 420 |
. . . . . . 7
|
| 38 | 37 | fdmd 5452 |
. . . . . 6
|
| 39 | 35, 38 | eqtr3id 2254 |
. . . . 5
|
| 40 | eqimss 3255 |
. . . . 5
| |
| 41 | 39, 40 | syl 14 |
. . . 4
|
| 42 | simpr 110 |
. . . 4
| |
| 43 | cnrest2 14823 |
. . . 4
| |
| 44 | 34, 41, 42, 43 | syl3anc 1250 |
. . 3
|
| 45 | 30, 44 | mpbid 147 |
. 2
|
| 46 | ishmeo 14891 |
. 2
| |
| 47 | 21, 45, 46 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-rest 13188 df-topgen 13207 df-top 14585 df-topon 14598 df-bases 14630 df-cn 14775 df-hmeo 14888 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |